Aspectos clave para la transformación genética de arroz (Oryza sativa L.) subespecie indica mediante Agrobacterium tumefaciens

Autores/as

DOI:

https://doi.org/10.15517/am.v32i3.44978

Palabras clave:

β-glucuronidasa, gus, modificación genética, callos embriogénicos

Resumen

Introducción. La transformación del arroz (Oryza sativa L. ssp indica) mediada por Agrobacterium, representa una oportunidad para la investigación científica y el mejoramiento genético. Es necesaria la optimización del protocolo para obtener la mayor eficiencia de transformación. Objetivo. Evaluar diferentes factores que afectan la transformación genética en callos embriogénicos de arroz de la subespecie indica vía Agrobacterium tumefaciens. Materiales y métodos. Este estudio se realizó en San José, Costa Rica, entre 2012 y 2014. En seis tratamientos se evaluaron: el efecto de la edad del callo, la concentración de acetosiringona, condición luminosa, la presencia o ausencia de radícula y la cepa de Agrobacterium tumefaciens en la transformación genética de callos embriogénicos de arroz de la variedad CR5272 con el gen reportero gus. Se compararon la cepa de Agrobacterium LBA4404 con el plásmido pCAMBIA1305.2 y las cepas ATHV, GV3101 y LBA4404, con el plásmido pCAMBIA1303; mediante pruebas histoquímicas para la detección de la expresión transitoria del gen marcador que codifica para la β-glucuronidasa. Resultados. La evaluación de los seis tratamientos con la cepa LBA4404::pCAMBIA1305.2 resultó en expresión transitoria del gen GusPlus de 1,33-7,00 % para la variedad CR5272 y de 8,00 % para el control con la variedad Nipponbare (ssp. japonica). Las cepas con el plásmido pCAMBIA1303 presentaron una expresión transitoria del gen gusA entre el 100-65 % con un área promedio de 14,23 mm2 (ATHV), 8,81 mm2 (GV3101), y 8,83 mm2 (LBA4404), sin diferencias significativas entre ellas; sin embargo, sí hubo diferencias al compararlas con la cepa LBA4404::pCAMBIA1305.2 (85 %, 4,39 mm2). Conclusiones. La utilización de las condiciones: callos de seis días, concentración de acetosiringona de 76 µM, luz antes y después del cocultivo, presencia de radícula y la cepa ATHV::pCAMBIA 1303, mejoraron la eficiencia de transformación con Agrobacterium tumefaciens en la variedad de arroz CR5272.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdollahi, M. R., Memari, H. R., & van Wijnen, A. J. (2011). Factor affecting the endogenous β-glucuronidase activity in rapeseed haploid cells: how to avoid interference with the Gus transgene in transformation studies. Gene, 487, 96–102. https://doi.org/10.1016/j.gene.2011.07.007

Alok, A., Sharma, S., Kumar, J., Verma, S., & Sood, H. (2017). Engineering in plant genome using Agrobacterium: progress and future. In V. C. Kalia, & A. K. Saini (Eds.), Metabolic engineering for bioactive compounds: Strategies and processes (pp. 91–111). Springer. https://doi.org/10.1007/978-981-10-5511-9_5

Bai, C., Rivera, S., Medina, V., Alves, R., Vilaprinyo, E., Sorribas, A., Canela, R., Capell, T., Sandmann, G., Christou, P., & Zhu, C. H. (2014). An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. The Plant Journal, 77, 464–475. https://doi.org/10.1111/tpj.12384

Bonilla, M., Muñoz, J., & Sánchez, F. (2008). Expresión transitoria del gen gus en caña de azúcar usando Agrobacterium tumefaciens. Acta Agronómica, 57(3), 161–166.

Camacho, J., & Navarro, J. (2020). Selección de líneas promisorias de arroz a partir de generaciones avanzadas. Alcances Tecnológicos, 13(1), 40–49. https://doi.org/10.35486/at.v13i1.169

Cervera, M. (2005). Histoquemical and fluorometric assays for uidA (GUS) gene detection. In L. Peña (Ed.), Methods in molecular biology, transgenic plants: Methods and protocols (pp. 203–211). Humana Press Inc. https://doi.org/10.1385/1-59259-827-7:203

Cheng, X., Sardana, R., Kaplan, H., & Altosaar, I. (1998). Agrobacterium-transformed rice plants expressing synthetic cryIA (b) and cry IA (c) genes are highly toxic to striped stem borer and yellow stem borer. Applied Biological Sciences, 95, 2767–2772. https://doi.org/10.1073/pnas.95.6.2767

Corporación Arrocera Nacional. (2019). Informe estadístico periodo 2018-2019. https://www.conarroz.com/userfile/file/INFORME_ANUAL_ESTADISTICO_PERIODO_2018_2019.pdf

Dai, S., Zhenng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R. N., & Fauquet, C. (2001). Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding, 7, 25–33. https://doi.org/10.1023/A:1009687511633

Datta, K., & Datta, S. K. (2006). Indica rice (Oryza sativa, BR29 and IR64). In K. Wang (Ed.), Agrobacterium Protocols. Methods in Molecular Biology (pp. 201–212). Humana Press Inc. https://doi.org/10.1385/1597451304

Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3, Article 358. https://doi.org/10.1186/2193-1801-3-358

Food and Agriculture Organization. (2004). Rice and human nutrition. Food and Agriculture Organization.

Fukagawa, N. K, & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65, S2–S3. https://doi.org/10.3177/jnsv.65.S2

García-Arias, C. (2011). Transformación del genoma de arroz (Oryza sativa L.) con el gen Vip3A de Bacillus thuringiensis para conferir tolerancia a Spodoptera frugiperda (J.E SMITH) [Tesis de Maestría, no publicada]. Universidad de Costa Rica.

He, X., Batheja, M., & Fuqua, C. (2005). Promoter-probe cassettes with the gusA (β-glucoronidase) reporter gene and several different antibiotic resistance markers. Journal of Microbiological Methods, 60, 281–283. https://doi.org/10.1016/j.mimet.2004.10.005

Hiei, Y., & Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 85, 271–283. https://doi.org/10.1007/s11240-005-9069-8

Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 6(2), 271–282. https://doi.org/10.1046/j.1365-313x.1994.6020271.x

Hoque, M. E., Mansfield, J. W., & Bennett, M. H. (2005). Agrobacterium-mediated transformation of indica rice genotypes: an assessment of factors affecting the transformation efficiency. Plant Cell, Tissue and Organ Culture, 82, 45–55. https://doi.org/10.1007/s11240-004-6154-3

Jefferson, R. A., Burgess, S.M., & Hirsh, D. (1986). β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proceedings of the National Academy of Sciences, 83(22), 8447–8451. https://doi.org/10.1073/pnas.83.22.8447

Kosugi, S., Ohashi, Y., Nakajima, K., & Arai, Y. (1990). An improved assay for β-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Science, 70, 133–140. https://doi.org/10.1016/0168-9452(90)90042-M

Kumar, K. K., Maruthasalam, S., Loganathan, M., Sudhakar, D., & Balasubramanian, P. (2005). An improved Agrobacterium mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Molecular Biology Reporter, 23, 67–73. https://doi.org/10.1007/BF02772648

Kuta, D., & Tripathi, L. (2005). Agrobacterium- induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. African Journal of Biotechnology, 4, 752-757.

León, J., & Arroyo, N. (2011). Producción, tecnología y comercialización del arroz en Costa Rica 1950-2005. Universidad de Costa Rica.

Lin, Y., & Zhang, Q. (2005). Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports, 23, 540–547. https://doi.org/10.1007/s00299-004-0843-6

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nishimura, A., Aichi, I., & Matsuoka, M. (2006). A protocol for Agrobacterium-mediated transformation in rice. Nature protocols, 1(6), 2796-2802. https://doi.org/10.1038/nprot.2006.469

Opabode, J. T. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Review, 1(1), 12–20.

Patel, M., Dewey, R. E., & Qu, R. (2013). Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell, Tissue and Organ Culture, 114, 19–29. https://doi.org/10.1007/s11240-013-0301-7

R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org.

Ramesh, S., Nagadhara, D., Reddy, V. D., & Rao, K. V. (2004). Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Science, 166, 1077–1085. https://doi.org/10.1016/j.plantsci.2003.12.028

Ramesh, M., & Gupta, A. (2005). Transient expression of beta-glucuronidase gene in indica and japonica rice (Oryza sativa L.) callus cultures after diferent stages of co-bombardment. African Journal of Biotechnology, 4(7), 596–600. https://doi.org/10.5897/AJB2005.000-3108

Reddy, V. S. (2008). Meetings and courses: Theoretical and practical course “Transgene expression in plants”. International Centre for Genetic Engineering and Biotechnology.

Saharan, V., Yadav, R. C., Yadav, N. R., & Ram, K. (2004). Studies on improved Agrobacterium-mediated transformation in two indica rice (Oryza sativa L.). African Journal of Biotechnology, 3(11), 572–575. https://doi.org/10.4314/ajb.v3i11.15020

Saikat, P., & Aryadeep, R. (2019). Comparative analyses of regeneration potentiality of eight indigenous aromatic indica rice (Oryza sativa L.) varieties. International Journal of Scientific Research in Biological Sciences, 6(1), 55–64. https://doi.org/10.26438/ijsrbs/v6i1.5564

Sawant, G. B., Sawardekar, S. V., Bhave, S. G., & Kshirsagar, J. K. (2018). Effect of acetosyringone and age of callus on Agrobacterium - mediated transformation of rice (Oryza sativa L.) calli. International Journal of Chemical Studies, 6(3), 82–88.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Shri, M., Rai, A., Verma, P. K., Misra, P., Dubey, S., Kumar, S., Verma, S., Gautam, N., Tripathi, R., Trivedi, P., & Chakrabarty, D. (2013). An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma, 250, 631–636. https://doi.org/10.1007/s00709-012-0439-x

Sood, P., Bhattacharya, A., & Sood, A. (2011). Problems and possibilities of monocot transformation. Biología plantarum, 55(1), 1–15. https://doi.org/10.1007/s10535-011-0001-2

Sudan, C., Prakash, S., Bhomkar, P., Jain, S., & Bhalla-Sarin, N. (2006). Ubiquitous presence of β-glucuronidase (gus) in plants and its regulation in some model plants. Planta, 224(4), 853–864. https://doi.org/10.1007/s00425-006-0276-2

Sundararajan, S., Sivaraman, B., Rajendran, V., & Ramalingam, S. (2017). Tissue culture and Agrobacterium- mediated genetic transformation studies in four commercially important indica rice cultivars. Journal of Crop Science and Biotechnology, 20(3), 175–183. https://doi.org/10.1007/s12892-017-0045-0

Tan, L. W., Rahman, Z. A., Goh, H. H., Hwang, D. J., Ismail, I., & Zainal, Z. (2017). Production of transgenic rice (indica cv. MR219) overexpressing ABP57 gene through Agrobacterium-mediated transformation. Sains Malaysiana, 46(5), 703–711. https://doi.org/10.17576/jsm-2017-4605-04

Tie, W., Zhou, F., Wang, L., Xie, W., Chen, H., Li, X., & Lin, Y. (2012). Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Molecular Biology, 78, 1–18. https://doi.org/10.1007/s11103-011-9842-5

Toki, S. (1997). Rapid and efficient Agrobacterium mediated transformation in rice. Plant Molecular Biology Reporter, 15(1), 16–21. https://doi.org/10.1007/BF02772109

Toriyama, K., & Hinata, K. (1985). Cell suspension and protoplast culture in rice. Plant Science, 41, 179–183. https://doi.org/10.1016/0168-9452(85)90086-X

Tripathi, R. M., Bisht, H. S., & Singh, R. P. (2010). Effect of acetosiringone and callus age on transformation for scutellum-derived callus of rice. International Journal of Pharma and Bio Sciences, 1(4), 163–171.

Tzfira, T., Jensen, C.S, Wang, W., Zuker, A., Vinocur, B., Altman, A., & Vainstein, A. (1997). Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium- mediated transformation. Plant Molecular Biology Reporter, 15(3), 219–235.

United Nations. (2019). (2020, January 7). World population prospects. https://population.un.org/wpp/

Valdés, V., Aguilar, J., & Sanabria, A. (1992). Tecnología de producción para el cultivo de arroz en riego: Mejores alternativas en el distrito de riego Arenal (Cuaderno informativo para productores No. 2). MAG-SENARA-IICA.

Vega, R., Vásquez, N., Espinoza, A. M., Gatica, A., & Valdez-Melara, M. (2009). Histology of somatic embryogenesis in rice (Oryza sativa cv. 5272). Revista Biología Tropical, 57(1), 141–150.

Yookongkaew, N., Srivatanakul, M., & Narangajavana, J. (2007). Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica). Journal of Plant Research, 120(2), 237–245.

Publicado

2021-09-01

Cómo citar

Aguilar-Bartels, C. M., Quirós-Segura, P., García-Piñeres, A., Gatica-Arias, A., & Arrieta-Espinoza, G. (2021). Aspectos clave para la transformación genética de arroz (Oryza sativa L.) subespecie indica mediante Agrobacterium tumefaciens. Agronomía Mesoamericana, 32(3), 764–778. https://doi.org/10.15517/am.v32i3.44978