Soil microorganisms, and its relationship with coffee beverage quality: A review

Authors

DOI:

https://doi.org/10.15517/am.2024.57260

Keywords:

sustainable agriculture, organoleptic characteristics, soil ecology, functional microbiome

Abstract

Introduction. Coffee (Coffea spp.) is the second most traded product globally and is cultivated in over eighty countries. This crop is complex due to its belonging to an ecosystem where abiotic and biotic factors have dynamics under different agronomic management conditions. To understand the plant's development and its influence on the sensory quality of the product, it is necessary to understand the intricate interaction between the coffee plant and its indigenous microorganisms. Objective. To describe the role of soil microbiota in coffee, including bacteria and fungi, and how it can contribute to the final quality of the beverage. Development. Soil is one of the most diverse and least studied ecosystems, in which various ecological functions important for plant growth and development occur. The identification of soil microbial components and their interactions with other organisms are important from an agronomic perspective. Soil microbiota can favor plant physiology, and thus, this compilation of information seeks to associate how the sensory attributes of coffee beverage can be benefited by soil microbiota. Articles from ScienceDirect, Scopus, Web of Science, and Google Scholar were reviewed between 2011 and 2023. The data show the diversity of plant growth-promoting rhizobacteria (PGPR), nitrogen-fixing bacteria (NFB), and arbuscular mycorrhizal fungi (AMF) associated with coffee cultivation. There are also microbial compounds that play an important role in shaping sensory attributes and are related to coffee cup quality. Conclusion. The microbial diversity of soil and fruit can synthesize or degrade compounds that influence the sensory profile of the beverage, which could have implications for sustainability and quality.

Downloads

Download data is not yet available.

References

Aldrich-Wolfe, L., Black, K. L., Hartmann, E. D. L., Shivega, W. G., Schmaltz, L. C., McGlynn, R. D., Johnson, P. G., Asheim Keller, R. J., & Vink, S. N. (2020). Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza, 30(4), 513–527. https://doi.org/10.1007/S00572-020-00967-7

Alemayehu, D. (2017). Review on genetic diversity of coffee (Coffea arabica. L) in Ethiopia. International Journal of Forestry and Horticulture, 3(2), 18–27. https://doi.org/10.20431/2454-9487.0302003

Andrade, S. A. L., Mazzafera, P., Schiavinato, M. A., & Silveira, A. P. D. (2019). Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science, 147(2), 105–115. https://doi.org/10.1017/S0021859608008344

Bano, S. A., & Uzair, B. (2021). Arbuscular Mycorrhizal Fungi (AMF) for improved plant health and production. In M. Kaushal, & R. Prasad (Eds.), Microbial biotechnology in crop protection (pp. 147–169). Springer Singapore. https://doi.org/10.1007/978-981-16-0049-4_6

Bez, C., Esposito, A., Musonerimana, S., Nguyen, T. H., Navarro-Escalante, L., Tesfaye, K., Turello, L., Navarini, L., Piazza, S., & Venturi, V. (2023). Comparative study of the rhizosphere microbiome of Coffea arabica grown in different countries reveals a small set of prevalent and keystone taxa. Rhizosphere, 25, Article 100652. https://doi.org/https://doi.org/10.1016/j.rhisph.2022.100652

Braga, A. U., Miranda, M. A., Aoyama, H., & Schmidt, F. L. (2023). Study on coffee quality improvement by self-induced anaerobic fermentation: Microbial diversity and enzymatic activity. Food Research International, 165, Article 112528. https://doi.org/10.1016/j.foodres.2023.112528

Cabrera-Rodríguez, A., Trejo-Calzada, R., García-De la Peña, G., Arreola-Ávila, J. G., Nava-Reyna, E., Vaca-Paniagua, F., Díaz-Velásquez, C., & Meza-Herrera, C. A. (2020). A metagenomic approach in the evaluation of the soil microbiome in coffee plantations under organic and conventional production in tropical agroecosystems. Emirates Journal of Food and Agriculture, 32(4), 263–270. https://doi.org/10.9755/EJFA.2020.V32.I4.2092

Caldwell, A. C., Silva, L. C. F., da Silva, C. C., & Ouverney, C. C. (2015). Prokaryotic diversity in the rhizosphere of organic, intensive, and transitional coffee farms in Brazil. PloS One, 10(6), Article e0106355. https://doi.org/10.1371/JOURNAL.PONE.0106355

Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57, 20–30. https://doi.org/https://doi.org/10.1016/j.tifs.2016.09.003

Cisneros-Rojas, C. A., Sánchez-de Prager, M., & Menjivar-Flores, J. C. (2017). Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1), 149-158. https://doi.org/10.15517/am.v28i1.22021

Cogo, F. D., Guimarães, P. T. G., Rojas, E. P., Júnior, O. J. S., Siqueira, J. O., & Carneiro, M. A. C. (2017). Arbuscular mycorrhiza in Coffea arabica L.: Review and meta-analysis. Coffee Science, 12(3), 419–443. https://doi.org/10.25186/CS.V12I3.1227

Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19(1), 29–37. https://doi.org/https://doi.org/10.1016/j.jare.2019.03.004

Cortes, A. D., & Nahar-Cortes, S. (2022). Biological Nitrogen Fixation in the Rhizosphere of Cacao (TheobromaTheobroma cacaocacao L.) and Coffee (CoffeaCoffea spp.) and its Role in Sustainable Agriculture. In D. K. Maheshwari, R. Dobhal, & S. Dheeman (Eds.), Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes (pp. 215–231). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4906-7_10

Cruz-O’Byrne, R., Piraneque-Gambasica, N., & Aguirre-Forero, S. (2021). Microbial diversity associated with spontaneous coffee bean fermentation process and specialty coffee production in northern Colombia. International Journal of Food Microbiology, 354, Article 109282. https://doi.org/10.1016/J.IJFOODMICRO.2021.109282

Curi, M. A., Jiménez, V. H., & Ibarra, J. P. J. (2019). Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizosfera de Coffea spp. en Pichanaqui, Perú. Biotecnología Vegetal, 19(4), 285–295. http://scielo.sld.cu/scielo.php?pid=S2074-86472019000400285&script=sci_arttext

Custódio, V., Gonin, M., Stabl, G., Bakhoum, N., Oliveira, M. M., Gutjahr, C., & Castrillo, G. (2022). Sculpting the soil microbiota. The Plant Journal, 109(3), 508–522. https://doi.org/10.1111/TPJ.15568

Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A., & Chakraborty, A. (2020). Plant microbiome–an account of the factors that shape community composition and diversity. Current Plant Biology, 23, Article 100161. https://doi.org/10.1016/J.CPB.2020.100161

de Beenhouwer, M., Van Geel, M., Ceulemans, T., Muleta, D., Lievens, B., & Honnay, O. (2015). Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry, 91(1), 133–139. https://doi.org/10.1016/J.SOILBIO.2015.08.037

de Melo Pereira, G. V., da Silva Vale, A., de Carvalho Neto, D. P., Muynarsk, E. S., Soccol, V. T., & Soccol, C. R. (2020). Lactic acid bacteria: what coffee industry should know? Current Opinion in Food Science, 31, 1–8. https://doi.org/10.1016/j.cofs.2019.07.004

de Sousa, L. P., Guerreiro-Filho, O., & Mondego, J. M. C. (2022). The Rhizosphere microbiomes of five species of coffee trees. Microbiology Spectrum, 10(2), Article e00444-22. https://doi.org/10.1128/SPECTRUM.00444-22

Duong, B., Marraccini, P., Maeght, J. L., Vaast, P., Lebrun, M., & Duponnois, R. (2020). Coffee microbiota and its potential use in sustainable crop management. A review. Frontiers in Sustainable Food Systems,4, Article 607935. https://doi.org/10.3389/fsufs.2020.607935

Duong, B., Nguyen, H. X., Phan, H. V., Colella, S., Trinh, P. Q., Hoang, G. T., Nguyen, T. T., Marraccini, P., Lebrun, M., & Duponnois, R. (2021). Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 242, Article 126613. https://doi.org/10.1016/J.MICRES.2020.126613

Echeverria-Beirute, F., Murray, S. C., Klein, P., Kerth, C., Miller, R., & Bertrand, B. (2018). Rust and thinning management effect on cup quality and plant performance for two cultivars of Coffea arabica L. Journal of Agricultural and Food Chemistry, 66(21), 5281–5292. https://doi.org/10.1021/ACS.JAFC.7B03180

Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333, Article 108796. https://doi.org/10.1016/J.IJFOODMICRO.2020.108796

Escudero-Leyva, E., Granados-Montero, M. D. M., Orozco-Ortiz, C., Araya-Valverde, E., Alvarado-Picado, E., Chaves-Fallas, J. M., Aldrich-Wolfe, L., & Chaverri, P. (2023). The endophytobiome of wild Rubiaceae as a source of antagonistic fungi against the American Leaf Spot of coffee (Mycena citricolor). Journal of Applied Microbiology. 134(5), Article lxad090. https://doi.org/10.1093/JAMBIO/LXAD090

Evangelista, S. R., Miguel, M. G. D. C. P., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F. (2015) Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112. https://doi.org/10.1016/J.IJFOODMICRO.2015.06.008

Ferraro, A. C., França, A. C., Machado, C. M. M., Aguiar, F. R., Oliveira, L. L., Braga Neto, A. M., & Oliveira, R. G. (2023). Commercial characteristics of coffee seedlings produced with different sources of phosphorus and plant growth-promoting bacteria. Brazilian Journal of Biology, 83, Article e270262. https://doi.org/10.1590/1519-6984.270262

Florac, D. B., Jiyuan, Z. S., Vasileios, P., Julio, T., Charles, L., V, M. A., Michael, C., Wilbert, S., Stefan, W., & Luc, D. V. (2016). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1), Article e02398-16. https://doi.org/10.1128/AEM.02398-16

Frac, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 707. https://doi.org/10.3389/fmicb.2018.00707

Fulthorpe, R., Martin, A. R., & Isaac, M. E. (2019). Root Endophytes of Coffee (Coffea arabica): Variation Across Climatic Gradients and Relationships with Functional Traits. Phytobiomes Journal, 4(1), 27–39. https://doi.org/10.1094/PBIOMES-04-19-0021-R

Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649–660. https://doi.org/10.1038/s41579-020-0402-3

González-Osorio, H., Góngora Botero, E. C., Medina Rivera, R. D., & Osorio Vega, N. W. (2020). Screening for phosphate-solubilizing fungi from Colombian andisols cultivated with coffee (Coffea arabica L.). Coffee Science, 15, Article e151666. https://doi.org/10.25186/.v15i.1666

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206(1), 131–140. https://doi.org/10.1016/J.MICRES.2017.08.016

Hernández-Acosta, E., Banuelos, J., & Trejo-Aguilar, D. (2021). Distribution and effect of mycorrhizal fungi in the coffee agroecosystem: A review. Revista de Biología Tropical, 69(2), 445-461. https://doi.org/10.15517/RBT.V69I2.42256

International Coffee Organization. (2022). International Coffee Organization - Trade Statistics Tables. Total Production by All Exporting Countries. https://www.ico.org/trade_statistics.asp?section=Statistics

Janse, J. M. (1897). Les endophytes radicaux de quelques plantes javanaises. Annales du Jardin botanique de Buitenzorg, 14, 53-201.

Jezeer, R. E., Santos, M. J., Boot, R. G. A., Junginger, M., & Verweij, P. A. (2018). Effects of shade and input management on economic performance of small-scale Peruvian coffee systems. Agricultural Systems, 162, 179–190. https://doi.org/10.1016/J.AGSY.2018.01.014

Jimenez-Salgado, T., Fuentes-Ramirez, L. E., Tapia-Hernandez, A., Mascarua-Esparza, M. A., Martinez-Romero, E., & Caballero-Mellado, J. (1997). Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing Acetobacteria. Applied and Environmental Microbiology, 63(9), 3676–3683. https://doi.org/10.1128/aem.63.9.3676-3683.1997

Jurburg, S. D., Shek, K. L., & McGuire, K. (2020). Soil microbial composition varies in response to coffee agroecosystem management. FEMS Microbiology Ecology, 96(9), Article fiaa164. https://doi.org/10.1093/FEMSEC/FIAA164

Kejela, T., Thakkar, V. R., & Thakor, P. (2016). Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), 1–13. https://doi.org/10.1186/s12866-016-0897-y

Krishnan, S., Pruvot-Woehl, S., Davis, A. P., Schilling, T., Moat, J., Solano, W., Al Hakimi, A., & Montagnon, C. (2021). Validating South Sudan as a Center of Origin for Coffea arabica: Implications for Conservation and Coffee Crop Improvement. Frontiers in Sustainable Food Systems, 5, Article 445. https://doi.org/10.3389/fsufs.2021.761611

Lamelas, A., Desgarennes, D., López-Lima, D., Villain, L., Alonso-Sánchez, A., Artacho, A., Latorre, A., Moya, A., & Carrión, G. (2020). The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. Frontiers in Plant Science, 11, Article 136. https://doi.org/10.3389/fpls.2020.00136

Lemanceau, P., Blouin, M., Muller, D., & Moënne-Loccoz, Y. (2017). Let the core microbiota be functional. Trends in Plant Science, 22(7), 583-595. https://doi.org/10.1016/j.tplants.2017.04.008

Lovera, M., Cuenca, G., Fajardo, L., Cáceres, A., & Guerra-Sierra, B. E. (2022). AMF Diversity in Coffee and Cacao Agroforestry Systems: Importance for Crop Productivity and Forest Conservation. In M. A. Lugo & M. C. Pagano (Eds.), Mycorrhizal Fungi in South America: Biodiversity, Conservation, and Sustainable Food Production (pp. 107–127). Springer International Publishing. https://doi.org/10.1007/978-3-031-12994-0_5

Machado, J. L., Tomaz, M. A., da Luz, J. M. R., Osório, V. M., Costa, A. V., Colodetti, T. V., Debona, D. G., & Pereira, L. L. (2022). Evaluation of genetic divergence of coffee genotypes using the volatile compounds and sensory attributes profile. Journal of Food Science, 87(1), 383–395. https://doi.org/https://doi.org/10.1111/1750-3841.15986

Mahatmanto, T., Sunarharum, W. B., Putri, F. A., Susanto, C. A., Davian, A. O., & Murdiyatmo, U. (2023). The microbiology of arabica and robusta coffee cherries: a comparative study of indigenous bacteria with presumptive impact on coffee quality. FEMS Microbiology Letters, 370, Article fnad024. https://doi.org/10.1093/femsle/fnad024

Martinez, S. J., Bressani, A. P. P., Simão, J. B. P., Pylro, V. S., Dias, D. R., & Schwan, R. F. (2022). Dominant microbial communities and biochemical profile of pulped natural fermented coffees growing in different altitudes. Food Research International, 159, Article 111605. https://doi.org/10.1016/j.foodres.2022.111605

Martins, P. M. M., Batista, N. N., Miguel, M. G. da C. P., Simão, J. B. P., Soares, J. R., & Schwan, R. F. (2020). Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Research International, 129, Article 108872. https://doi.org/10.1016/J.FOODRES.2019.108872

Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., Bisht, J. K., Pattanayak, A., Naveed, M., & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107, 8–32. https://doi.org/10.1016/J.ECOLENG.2017.06.058

Mertens, J. E. J., Emsens, W.-J., Jocqué, M., Geeraert, L., & De Beenhouwer, M. (2020). From natural forest to coffee agroforest: implications for communities of large mammals in the Ethiopian highlands. Oryx, 54(5), 715–722. https://doi.org/10.1017/S0030605318000844

Morales-Ramos, V., Escamilla-Prado, E., Ruiz-Carbajal, R. A., Pérez-Sato, J. A., Velázquez-Morales, J. A., & Servín-Juárez, R. (2020). On the soil–bean–cup relationships in Coffea arabica L. Journal of the Science of Food and Agriculture, 100(15), 5434–5441. https://doi.org/10.1002/JSFA.10594

Moreno Reséndez, A., Carda Mendoza, V., Reyes Carrillo, J. L., Vásquez Arroyo, J., & Cano Ríos, P. (2018). Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), 68–83. https://doi.org/10.15446/REV.COLOMB.BIOTE.V20N1.73707

Mukharib, D., Babou, C., Govindappa, M., Gokavi, N., Mote, K., Manjunath, A., & Raghuramulu, Y. (2018). Establishment of Coffee Seedlings as Influenced by Planting Pit Size and Rock Phosphate along with Plant Growth Promoting Rhizobacteria Inoculations. International Journal of Plant & Soil Science, 21(3), 1-5. https://doi.org/10.9734/ijpss/2018/38955

Nguyen, D. N., Wang, S. L., Nguyen, A. D., Doan, M. D., Tran, D. M., Nguyen, T. H., Ngo, V. A., Doan, C. T., Tran, T. N., Do, V. C., & Nguyen, V. B. (2021). Potential application of rhizobacteria isolated from the central highland of Vietnam as an effective biocontrol agent of robusta coffee nematodes and as a bio-fertilizer. Agronomy, 11(9), Article 1887. https://doi.org/10.3390/agronomy11091887

Nwachukwu, B. C., & Babalola, O. O. (2022). Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Frontiers in Sustainable Food Systems, 6, Article 886987. https://doi.org/10.3389/fsufs.2022.886987

Peñuela-Martínez, A. E., Velasquez-Emiliani, A. V., & Angel, C. A. (2023). Microbial diversity using a metataxonomic approach, associated with coffee fermentation processes in the department of Quindío, Colombia. Fermentation, 9(4), Article 343. https://doi.org/10.3390/fermentation9040343

Pimenta, C. J., Angélico, C. L., & Chalfoun, S. M. (2018). Challengs in coffee quality: Cultural, chemical and microbiological aspects. Ciência e Agrotecnologia, 42(4), 337–349. https://doi.org/10.1590/1413-70542018424000118

Pino, A. F. S., Espinosa, Z. Y. D., & Cabrera, E. V. R. (2023). Characterization of the rhizosphere bacterial microbiome and coffee bean fermentation in the Castillo-Tambo and bourbon varieties in the Popayán-Colombia Plateau. BMC Plant Biology, 23(1), Article 217. https://doi.org/10.1186/s12870-023-04182-2

Posada, R. H., Sánchez de Prager, M., Heredia-Abarca, G., & Sieverding, E. (2018). Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and Mexico. Agroforestry Systems, 92(2), 555–574. https://doi.org/10.1007/S10457-016-0030-0

Prates, J.P., Moreira, B. C., da Silva, M. D. C. S., Veloso, T. G. R., Stürmer, S. L., Fernandes, R. B. A., de Sá Mendonça, E., & Kasuya, M. C. M. (2019). Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PloS One, 14(1), Article e0209093. https://doi.org/10.1371/JOURNAL.PONE.0209093

Prates, J. P., Veloso, T. G. R., de Cássia Soares da Silva, M. da L., J. M. R., Oliveira, S. F., & Kasuya, M. C. M. (2021). Soil microorganisms and quality of the coffee beverage. In L. Louzada Pereira, & T. Rizzo Moreira (Eds.), Quality determinants in coffee production. food engineering series (pp. 101–147). Springer, Cham. https://doi.org/10.1007/978-3-030-54437-9_3

Rai, P. K., Singh, M., Anand, K., Saurabh, S., Kaur, T., Kour, D., Yadav, A. N., & Kumar, M. (2020). Chapter 4 - Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. In A. A. Rastegari, A. N. Yadav, & N. Yadav (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 49–60). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820526-6.00004-X

Ramos-Cabrera, E. V., Delgado-Espinosa, Z. Y., Murillo-Muñoz, R. A., Muños-Días, V. E., & Hoyos-García, J. (2021). Evaluación de bacterias endofíticas solubilizadores de fósforo en café, una alternativa sostenible. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(2), 94-107. https://doi.org/10.18684/bsaa.v19.n2.2021.1554

Ranjini, A. P., & Naika, R. (2019). Efficacy of biocontrol agents on Myrothecium roridum, the stem necrosis and leaf spot pathogen of coffee seedlings. Journal of Biopesticides, 12(1), 109-113.

Sagar, A., Rathore, P., Ramteke, P. W., Ramakrishna, W., Reddy, M. S., & Pecoraro, L. (2021). Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms, 9(7), Article 1491. https://doi.org/10.3390/MICROORGANISMS9071491

Sahu, N., Vasu, D., Sahu, A., Lal, N., & Singh, S. K. (2017). Strength of Microbes in Nutrient Cycling: A Key to Soil Health. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture: Volume I: Plant-soil-microbe nexus (pp. 69–86). Springer Singapore. https://doi.org/10.1007/978-981-10-5589-8_4

Sahu, P. K., Singh, D. P., Prabha, R., Meena, K. K., & Abhilash, P. C. (2019). Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecological Indicators, 105, 601-612. https://doi.org/10.1016/j.ecolind.2018.05.084

Shaw, S., Le Cocq, K., Paszkiewicz, K., Moore, K., Winsbury, R., de Torres Zabala, M., Studholme, D. J., Salmon, D., Thornton, C. R., & Grant, M. R. (2016). Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Molecular Plant Pathology, 17(9), 1425–1441. https://doi.org/10.1111/MPP.12429

Silva, M. de C. S., Veloso, T. G. R., Entringer, T. L., Bullergahn, V. B. B. B., Pereira, L. L., Anastácio, L. M., & Kasuya, M. C. M. (2020). Diversity of nitrogen-fixing bacteria in coffee crops (Coffea arabica L.). Revista Ifes Ciência, 6(3), 12–21. https://doi.org/10.36524/RIC.V6I3.852

Silva, M. C., Guerra-Guimarães, L., Diniz, I., Loureiro, A., Azinheira, H., Pereira, A. P., Tavares, S., Batista, D., & Várzea, V. (2022). An overview of the mechanisms involved in coffee-Hemileia vastatrix interactions: plant and pathogen perspectives. Agronomy, 12(2), Article 326. https://doi.org/10.3390/agronomy12020326

Simmer, M. B., Soares da Silva, M. C., Pereira, L. L., Moreira, T. R., Guarçoni, R. C., Veloso, T. G. R., da Silva, I. M. R., Entringer, T. L., Kasuya, M. C. M., da Luz, J. M. R., Moreli, A. P., & da Silva Oliveira, E. C. (2022). Edaphoclimatic conditions and the soil and fruit microbiota influence on the chemical and sensory quality of the coffee beverage. European Food Research and Technology, 248(12), 2941–2953. https://doi.org/10.1007/s00217-022-04102-y

Siqueira, J. O., Saggin-Júnior, O. J., Flores-Aylas, W. W., & Guimarães, P. T. G. (1998). Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza, 7. 293–300. https://doi.org/10.1007/s005720050195

Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8), Article 1011. https://doi.org/10.3390/plants9081011

Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O’Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M., & Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028–1046. https://doi.org/10.3852/16-042

Srigandha, D. D., Venkatesha, J., Shetty, G. R., Biradar, I. B., Manjunath, G., & Kulkarni, S. (2017). Study of suitability of containers and rooting media for growth and rooting of coffee seedlings (Coffea arabica cv. chandragiri). International Journal of Current Microbiology and Applied Sciences, 6(10), 527–530. https://doi.org/10.20546/ijcmas.2017.610.064

Sternhagen, E. C., Black, K. L., Hartmann, E. D. L., Shivega, W. G., Johnson, P. G., McGlynn, R. D., Schmaltz, L. C., Asheim Keller, R. J., Vink, S. N., & Aldrich-Wolfe, L. (2020). Contrasting patterns of functional diversity in coffee root fungal communities associated with organic and conventionally managed fields. Applied and Environmental Microbiology, 86(11), Article e00052-20. https://doi.org/10.1128/AEM.00052-20

Suzzi, G., Poltronieri, P., Vittori, S., Schwan, R. F., Sj, M., App, B., Dr, D., Jbp, S., Rf, S., Martinez, S. J., Pereira Bressani, A. P., Dias, R., Batista, J., & Simão, P. (2019). Effect of bacterial and yeast Starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10, Article 1287. https://doi.org/10.3389/fmicb.2019.01287

Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), Article 4859. https://doi.org/10.3390/SU12124859

Tolessa, K., D’heer, J., Duchateau, L., & Boeckx, P. (2017). Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. Journal of the Science of Food and Agriculture, 97(9), 2849–2857. https://doi.org/10.1002/JSFA.8114

Toniutti, L., Breitler, J. C., Etienne, H., Campa, C., Doulbeau, S., Urban, L., Lambot, C., Pinilla, J. C. H., & Bertrand, B. (2017). Influence of environmental conditions and genetic background of arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Frontiers in Plant Science, 8, Article 2025. https://doi.org/10.3389/FPLS.2017.02025

Torres, G. V., Pisco, A. S., & Lopez, L. A. A. (2021). Efecto bioprotector de micorrizas arbusculares en la reducción de roya (Hemileia vastatrix) en la Región San Martín. Revista Agrotecnológica Amazónica, 1(1), 34–44. https://doi.org/10.51252/RAA.V1I1.122

Torrez, V., Benavides-Frias, C., Jacobi, J., & Speranza, C. I. (2023). Ecological quality as a coffee quality enhancer. A review. Agronomy for Sustainable Development, 43(1), Article 19. https://doi.org/10.1007/s13593-023-00874-z

Urgiles-Gómez, N., Avila-Salem, M. E., Loján, P., Encalada, M., Hurtado, L., Araujo, S., Collahuazo, Y., Guachanamá, J., Poma, N., Granda, K., Robles, A., Senés, C., & Cornejo, P. (2021). Plant growth-promoting microorganisms in coffee production: from isolation to field application. Agronomy, 11(8), Article 1531. https://doi.org/10.3390/AGRONOMY11081531

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 21(5), Article 573. https://doi.org/10.3390/MOLECULES21050573

Veloso, T. G. R., da Silva, M. C. S., Cardoso, W. S., Guarçoni, R. C., Kasuya, M. C. M., & Pereira, L. L. (2020). Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Scientific Reports, 10(1), Article 14692. https://doi.org/10.1038/s41598-020-71309-y

Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2019). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3–17. https://doi.org/10.1007/S00299-019-02447-5

Zhang, S. J., De Bruyn, F., Pothakos, V., Contreras, G. F., Cai, Z., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Frontiers in Microbiology, 10, Article 2621. https://doi.org/10.3389/FMICB.2019.02621

Published

2024-04-11

How to Cite

Rojas-Chacón, J. A., Echeverría-Beirute, F., Jiménez Madrigal, J. P., & Gatica-Arias, A. (2024). Soil microorganisms, and its relationship with coffee beverage quality: A review. Agronomía Mesoamericana. https://doi.org/10.15517/am.2024.57260

Issue

Section

Literature Reviews