Optimal frame rate to evaluate boar sperm kinematic with a CASA-Mot system

Authors

DOI:

https://doi.org/10.15517/am.v32i1.41928

Keywords:

espermatozoa, frames per second, sperm subpoblations, pig, swine reproduction

Abstract

Introduction. Motility is the most used seminal quality indicator, therefore, it is necessary to determine an adequate frame rate (FR) to standardize kinetic analysis with computerized semen analysis equipment (CASA-Mot) and reduce variability between laboratories, which will improve the number of seminal doses and their quality for the swine industry based on artificial insemination (AI). Objective. To determine the optimal frame rate frequency on boar sperm kinetics using a commercial CASA-Mot system and to analyze the distribution of sperm subpopulations with the optimal FR. Materials and methods. Twenty seminal doses of ten Pietrain boars (Sus scrofa domestica) were used. The experimental period was between February and July 2017. The CASA-Mot system (ISAS®v1) was used with ISAS® D4C20 counting chambers preheated to 37 °C. The video capture time was two seconds. Results. The frame rate affected the sperm kinetic parameters, except for the rectilinear velocity (VSL), because it did not represent a FR-dependent behavior. The other variables presented significant alterations when changing their FR, and curvilinear velocity (VCL) and average path velocity (VAP) were the most sensitive values to the change. Three principal components (PC) defined by patterns of motility, progressiveness and oscillation were obtained, where the PC1 (velocity-undulation) was the most influential since it represented 51.34 % and 55.08 % of the total explained variance for 25 and 200 fps (frames per second), respectively. Conclusion. The optimal frame rate to analyze sperm kinematics variables in boar semen with a CASA-Mot system was 200 fps. A lower frame rate causes errors in the sperm trajectory estimation. The sperm subpopulation distribution changes according to the frame rate used. It is necessary to establish an analysis protocol to homogenize the results.

Downloads

Download data is not yet available.

Author Biography

Anthony Valverde, Instituto Tecnológico de Costa Rica

Profesor-Investigador

Escuela de Agronomía

References

Abaigar, T., Holt, W., Harrison, R., & del Barrio, G. (1999). Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biology of Reproduction, 60(1), 32–41. https://doi.org/10.1095/biolreprod60.1.32

Amann, R., & Hammerstedt, R. (1993). In vitro evaluation of sperm quality: An opinion. Journal of Andrology, 14(6), 397–406. https://doi.org/10.1002/j.1939-4640.1993.tb03247.x

Amann, R., & Katz, D. F. (2004). Andrology Lab Corner*: Reflections on CASA After 25 Years. Journal of Andrology, 25(3), 317–325. https://doi.org/10.1002/j.1939-4640.2004.tb02793.x

Amann, R., & Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 81(1), 5-17. https://doi.org/10.1016/J.THERIOGENOLOGY.2013.09.004

Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., & Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reproduction, Fertility and Development, 30(6), 810–819. https://doi.org/10.1071/RD17551

Bompart, D., Vázquez, R., Gómez, R., Valverde, A., Roldán, E., García-Molina, A., & Soler, C. (2019). Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Animal Reproduction Science, 209, 106169. https://doi.org/10.1016/J.ANIREPROSCI.2019.106169

Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H., & Gadella, B. M. (2011). Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology, 76(8), 1473-1486. https://doi.org/10.1016/j.theriogenology.2011.05.040

Broekhuijse, M. L. W. J., Šoštarić, E., Feitsma, H., & Gadella, B. M. (2012). Application of computer-assisted semen analysis to explain variations in pig fertility. Journal of Animal Science, 90(3), 779–789. https://doi.org/10.2527/jas.2011-4311

Caldeira, C., Hernández-Ibáñez, S., Valverde, A., Martin, P., Herranz-Jusdado, J. G., Gallego, V., Asturiano, J. F., Dzyuba, B., Pšenička, M., & Soler, C. (2019). Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture, 502, 223–231. https://doi.org/10.1016/j.aquaculture.2018.12.001

Castellini, C., Dal Bosco, A., Ruggeri, S., & Collodel, G. (2011). What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertility and Sterility, 96(1), 24–27. https://doi.org/10.1016/j.fertnstert.2011.04.096

Fair, S., & Romero-Aguirregomezcorta, J. (2019). Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology, 137, 15–22. https://doi.org/10.1016/j.theriogenology.2019.05.032

Flores, E., Taberner, E., Rivera, M. M., Peña, A., Rigau, T., Miró, J., & Rodríguez-Gil, J. E. (2008). Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. Theriogenology, 70(6), 936–945. https://doi.org/10.1016/j.theriogenology.2008.05.056

Gallagher, M. T., Cupples, G., Ooi, E. H., Kirkman-Brown, J. C., & Smith, D. J. (2019). Rapid sperm capture: high-throughput flagellar waveform analysis. Human Reproduction, 34(7), 1173–1185. https://doi.org/10.1093/humrep/dez056

Gallego, V., Carneiro, P., Mazzeo, I., Vílchez, M., Peñaranda, D., Soler, C., Pérez, L., & Asturiano, J. (2013). Standardization of European eel (Anguilla anguilla) sperm motility evaluation by CASA software. Theriogenology, 79(7), 1034–1040. https://doi.org/10.1016/J.THERIOGENOLOGY.2013.01.019

Gallego, V., Vílchez, M. C., Peñaranda, D. S., Pérez, L., Herráez, M. P., Asturiano, J. F., & Martínez-Pastor, F. (2015). Subpopulation pattern of eel spermatozoa is affected by post-activation time, hormonal treatment and the thermal regimen. Reproduction, Fertility and Development, 27(3), 529–543. https://doi.org/10.1071/RD13198

García-Molina, A., Valverde, A., Bompart, D., Caldeira, C., Vendrell, A., & Soler, C. (2019). Updating semen analysis: a subpopulation approach. Asian Journal of Andrology, 22(1), 118–119. https://doi.org/10.4103/aja.aja_33_19

Hirai, M., Boersma, A., Hoeflich, A., Wolf, E., Foll, J., Aumüller, T. R., & Braun, J. (2001). Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): relation to fertility and seminal plasma growth factors. Journal of Andrology, 22(1), 104–110. http://www.ncbi.nlm.nih.gov/pubmed/11191073

Holt, C., Holt, W., & Moore, H. (1996). Choice of operating conditions to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. Journal of Andrology, 17(5), 587–596. https://doi.org/10.1002/j.1939-4640.1996.tb01837.x

Holt, C., Holt, W., Moore, H., Reed, H., & Curnock, R. (1997). Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. Journal of Andrology, 18, 312–323.

Ibanescu, I., Siuda, M., & Bollwein, H. (2020). Motile sperm subpopulations in bull semen using different clustering approaches – Associations with flow cytometric sperm characteristics and fertility. Animal Reproduction Science, 215, 106329. https://doi.org/10.1016/j.anireprosci.2020.106329

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

Katz, D. F., & Dott, H. M. (1975). Methods of measuring swimming speed of spermatozoa. Journal of Reproduction and Fertility, 45(2), 263–272. https://doi.org/10.1530/jrf.0.0450263

Kaufman, L., & Rousseuw, P. J. (1991). Finding groups in data: An introduction to cluster analysis. Biometrics, 47(2), 788. https://doi.org/10.2307/2532178

Kime, D., Van Look, K. J., McAllister, B., Huyskens, G., Rurangwa, E., & Ollevier, F. (2001). Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 425–433. https://doi.org/10.1016/S1532-0456(01)00270-8

Knox, R. V. (2016). Artificial insemination in pigs today. Theriogenology, 85(1), 83–93. https://doi.org/10.1016/j.theriogenology.2015.07.009

Kraemer, M., Fillion, C., Martin-Pont, B., & Auger, J. (1998). Factors influencing human sperm kinematic measurements by the Celltrak computer-assisted sperm analysis system. Human Reproduction, 13(3), 611–619. http://www.ncbi.nlm.nih.gov/pubmed/9572421

Lopez-Rodriguez, A., Van Soom, A., Arsenakis, I., & Maes, D. (2017). Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Management, 3(15), 7981. https://doi.org/10.1186/s40813-017-0062-5

Lu, J. C., Huang, Y. F., & Lü, N. Q. (2014). Computer-aided sperm analysis: Past, present and future. Andrologia, 46(4), 329–338. https://doi.org/10.1111/and.12093

Martínez-Pastor, F., Tizado, E., Garde, J., Anel, L., & de-Paz, P. (2011). Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology, 75(5), 783–795. https://doi.org/10.1016/J.THERIOGENOLOGY.2010.11.034

Morris, A. R., Coutts, J. R., & Robertson, L. (1996). A detailed study of the effect of videoframe rates of 25, 30 and 60 Hertz on human sperm movement characteristics. Human Reproduction, 11(2), 304–310. https://doi.org/10.1093/HUMREP/11.2.304

Mortimer, S. (2000). CASA - Practical Aspects. Journal of Andrology, 21(4), 515–524. https://doi.org/10.1002/J.1939-4640.2000.TB02116.X

Mortimer, D., Serres, C., Mortimer, S., & Jouannet, P. (1988). Influence of image sampling frequency on the perceived movement characteristics of progressively motile human spermatozoa. Gamete Research, 20(3), 313–327. https://doi.org/10.1002/mrd.1120200307

Mortimer, S., & Swan, M. (1999). Effect of image sampling frequency on established and smoothing-independent kinematic values of capacitating human spermatozoa. Human Reproduction, 14(4), 997–1004. https://doi.org/10.1093/humrep/14.4.997

Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3), 274–295. https://doi.org/10.1007/s00357-014-9161-z

Nöthling, J. O., & dos Santos, I. P. (2012). Which fields under a coverslip should one assess to estimate sperm motility? Theriogenology, 77(8), 1686–1697. https://doi.org/10.1016/j.theriogenology.2011.12.014

Parrilla, I., Perez-Patiño, C., Li, J., Barranco, I., Padilla, L., Rodriguez-Martinez, H., Martinez, E. A., & Roca, J. (2019). Boar semen proteomics and sperm preservation. Theriogenology, 137, 23–29. https://doi.org/10.1016/j.theriogenology.2019.05.033

Peña, A., Adán, S., Quintela, L., Becerra, J., & Herradón, P. (2018). Relationship between motile sperm subpopulations identified in frozen-thawed dog semen samples and their ability to bind to the zona pellucida of canine oocytes. Reproduction in Domestic Animals, 53, 14–22. https://doi.org/10.1111/rda.13349

Ramió, L., Rivera, M. M., Ramírez, A., Concha, I. I., Peña, A., Rigau, T., & Rodríguez-Gil, J. E. (2008). Dynamics of motile-sperm subpopulation structure in boar ejaculates subjected to “in vitro” capacitation and further “in vitro” acrosome reaction. Theriogenology, 69(4), 501–512. https://doi.org/10.1016/j.theriogenology.2007.10.021

Ravinder, K., Nasaruddin, K., Majumdar, K. C., & Shivaji, S. (1997). Computerized analysis of motility, motility patterns and motility parameters of spermatozoa of carp following short-term storage of semen. Journal of Fish Biology, 50(6), 1309–1328. https://doi.org/10.1111/j.1095-8649.1997.tb01655.x

Rijsselaere, T., Van Soom, A., Maes, D., & de Kruif, A. (2004). Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology, 60(8), 1553–1568. https://doi.org/10.1016/S0093-691X(03)00171-7

Saravia, F., Núñez-Martínez, I., Morán, J., Soler, C., Muriel, A., Rodríguez-Martínez, H., & Peña, F. (2007). Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology, 68(2), 196–203. https://doi.org/10.1016/j.theriogenology.2007.04.052

Schulze, M., Ruediger, K., Mueller, K., Jung, M., Well, C., & Reissmann, M. (2013). Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Animal Reproduction Science, 140(1–2), 70-76. https://doi.org/10.1016/j.anireprosci.2013.05.012

Sellés, E., Gadea, J., Romar, R., Matás, C., & Ruiz, S. (2003). Analysis of in vitro fertilizing capacity to evaluate the freezing procedures of boar semen and to predict the subsequent fertility. Reproduction in Domestic Animals = Zuchthygiene, 38(1), 66–72. http://www.ncbi.nlm.nih.gov/pubmed/12535333

Soler, C., Contell, J., Bori, L., Sancho, M., García-Molina, A., Valverde, A., & Segarvall, J. (2017). Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). Asian Journal of Andrology, 19(2), 154–159. https://doi.org/10.4103/1008-682X.188445

Soler, C., Fuentes, M., Sancho, M., García, A., Núñez de Murga, M., & Núñez de Murga, J. (2012). Effect of counting chamber on seminal parameters, analyzing with the ISASv1®. Revista Internacional de Andrología, 10(4), 132–138. https://doi.org/10.1016/S1698-031X(12)70069-9

Soler, C., García, A., Contell, J., Segervall, J., & Sancho, M. (2014). Kinematics and Subpopulations’ Structure Definition of Blue Fox (Alopex lagopus) Sperm Motility using the ISAS® V1 CASA System. Reproduction in Domestic Animals, 49(4), 560–567. https://doi.org/10.1111/rda.12310

Spencer, N. H. (2013). Essentials of Multivariate Data Analysis. Chapman and Hall/CRC Press. https://doi.org/10.1201/b16344

Thurston, L., Watson, P., Mileham, A., & Holt, W. (2001). Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. Journal of Andrology, 22(3), 382–394. http://www.ncbi.nlm.nih.gov/pubmed/11330638

Tremoen, N. H., Gaustad, A. H., Andersen-Ranberg, I., van Son, M., Zeremichael, T. T., Frydenlund, K., Grindflek, E., Våge, D. I., & Myromslien, F. D. (2018). Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Animal Reproduction Science, 193, 226–234. https://doi.org/10.1016/J.ANIREPROSCI.2018.04.075

Valverde, A., Arenán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A., & Soler, C. (2016). Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 18(6), 851–857. https://doi.org/10.4103/1008-682X.187579

Valverde, A., Barquero, V., & Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3), 189–198. https://doi.org/10.22358/jafs/127691/2020

Valverde, A., & Madrigal-Valverde, M. (2018). Sistemas de análisis computadorizado de semen en la reproducción animal. Agronomía Mesoamericana, 29(2), 469–484. https://doi.org/10.15517/ma.v29i2.30613

Valverde, A., & Madrigal-Valverde, M. (2019). Evaluación de cámaras de recuento sobre parámetros espermáticos de verracos analizados con un sistema CASA-Mot. Agronomía Mesoamericana, 30(2), 447–458. https://doi.org/10.15517/am.v30i1.34145

Valverde, A., Madrigal-Valverde, M., Caldeira, C., Bompart, D., Núñez de Murga, J., Arnau, S., & Soler, C. (2019a). Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analyzed with a CASA-Mot system. Reproduction in Domestic Animals, 54(2), 167–175. https://doi.org/10.1111/rda.13320

Valverde, A., Madrigal-Valverde, M., Camacho-Calvo, M., Zambrana-Jiménez, A., & López, L. (2018). Efecto de la composición racial sobre la calidad espermática de verracos. Agronomía Mesoamericana, 29(3), 485. https://doi.org/10.15517/ma.v29i3.32445

Valverde, A., Madrigal-Valverde, M., Castro-Morales, O., Gadea-Rivas, A., Johnston, S., & Soler, C. (2019b). Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Animal Reproduction Science, 207, 9–20. https://doi.org/10.1016/J.ANIREPROSCI.2019.06.011

Valverde, A., Madrigal-Valverde, M., Lotz, J., Bompart, D., & Soler, C. (2019c). Effect of video capture time on sperm kinematic parameters in breeding boars. Livestock Science, 220, 52–56. https://doi.org/10.1016/j.livsci.2018.12.008

van der Horst, G., Maree, L., & du Plessis, S. (2018). Current perspectives of CASA applications in diverse mammalian spermatozoa. Reproduction, Fertility and Development, 30(6), 875–888. https://doi.org/10.1071/RD17468

Vásquez, F., Soler, C., Camps, P., Valverde, A., & García-Molina, A. (2016). Spermiogram and sperm head morphometry assessed by multivariate cluster analysis results during adolescence (12-18 years) and the effect of varicocele. Asian Journal of Andrology, 18(6), 824–830. https://doi.org/10.4103/1008-682X.186873

Verstegen, J., Iguer-Ouada, M., & Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology, 57(1), 149–179. https://doi.org/10.1016/S0093-691X(01)00664-1

Víquez, L., Barquero, V., Soler, C., Roldan, ERS., & Valverde, A. (2020). Kinematic sub-populations in bull spermatozoa: A comparison of classical and bayesian approaches. Biology, 9(6), 138. https://doi.org/10.3390/biology9060138

Vyt, P., Maes, D., Quinten, C., Rijsselaere, T., Deley, W., Aarts, M., De Kruif, A., & Van-Soom, A. (2008). Detailed motility evaluation of boar semen and its predictive value for reproductive performance in sows. Vlaams Diergeneeskundig Tijdschrift, 77(77), 291-298. https://doclib.uhasselt.be/dspace/bitstream/1942/9075/1/sows.pdf

Wilson-Leedy, J. G., & Ingermann, R. L. (2007). Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology, 67(3), 661–672. https://doi.org/10.1016/j.theriogenology.2006.10.003

Winters, R. A., Hamilton, D. N., Bhatnagar, A. S., Fitzgerald, R., Bovin, N., & Miller, D. J. (2018). Porcine sperm binding to oviduct cells and glycans as supplements to traditional laboratory semen analysis. Journal of Animal Science, 96(12), 5265–5275. https://doi.org/10.1093/jas/sky372

Yániz, J., Palacín, I., Caycho, K., Soler, C., Silvestre, M., & Santolaria, P. (2018). Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reproduction, Fertility and Development, 30(6), 919–923. https://doi.org/10.1071/RD17441

Yániz, J., Soler, C., Alquézar-Baeta, C., & Santolaria, P. (2017). Toward an integrative and predictive sperm quality analysis in Bos taurus. Animal Reproduction Science, 181, 108–114. https://doi.org/10.1016/j.anireprosci.2017.03.022

Yániz, J., Vicente-Fiel, S., Soler, C., Recreo, P., Carretero, T., Bono, A., Berné, J., & Santolaria, P. (2016). Comparison of different statistical approaches to evaluate morphometric sperm subpopulations in men. Asian Journal of Andrology, 18(6), 819–823. https://doi.org/10.4103/1008-682X.186872

Zhu, J. J., Pacey, A. A., Barratt, C. L. R., & Cooke, I. D. (1994). Computer-assisted measurement of hyperactivation in human spermatozoa: Differences between european and american versions of the hamilton-thorn motility analyser. Human Reproduction, 9(3), 456–462. https://doi.org/10.1093/oxfordjournals.humrep.a138527

Published

2021-01-01

How to Cite

Barquero, V., Víquez, L., Calderón Calderón, J., & Valverde, A. (2021). Optimal frame rate to evaluate boar sperm kinematic with a CASA-Mot system. Agronomía Mesoamericana, 32(1), 1–18. https://doi.org/10.15517/am.v32i1.41928