Assessment of counting chambers on boar sperm parameters analyzed by a CASA-Mot system


  • Anthony Valverde Instituto Tecnológico de Costa Rica
  • Mónica Madrigal-Valverde Instituto Tecnológico de Costa Rica



semen, boar, spermatozoa, reproduction


Introduction. Understanding the variability in sperm kinetic values through different chambers depths, shows the importance to create a standard for quality control methods in the artificial insemination (AI) industry. Objective. The work aimed was to evaluate the spermatozoa kinetic parameters based on different depths of the visualization chamber by means of a commercial system of computer-assisted sperm analysis, CASA-Mot. Materials and Methods. Twenty seminal doses of ten pietrain boars were used. The experimental period was from February to July 2017. The Integrated Semen Analyses System (ISAS®v1) with 50 Hz capture frequency was used. ISAS®D4C16 and ISAS®D4C20 counting chambers with a height of 16 and 20 μm respectively and pre-heated to 37 °C were employed. Results. Higher values (p<0.05) were found for all kinetic parameters when the height of the counting chamber was 20 μm. The zone effects within the counting chamber were constant between the two heights, and the variations observed in the kinetic parameters were due to a random effect of the boar. When analyzing the zone effect within the counting chamber, the first three fields of analysis showed higher curvilinear and rectilinear velocity (p<0.05) than the following fields, which is attributed to the presence of passive movement (drifting). Conclusion. The greater amplitude and volume capacity within the counting chamber (20 μm versus 16 μm), could promote the unrestricted movement of the cells, which would explain the increase in the kinetic values as the chamber height increased. Studies on the technical conditions of seminal analysis should be continued in order to standardize valuation methods with CASA systems. 


Download data is not yet available.

Author Biography

Anthony Valverde, Instituto Tecnológico de Costa Rica


Escuela de Agronomía


Amann, R., and D. Waberski. 2014. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81(1):5-17. doi:10.1016/j.theriogenology.2013.09.004

Bompart, D., A. García-Molina, A. Valverde, C. Caldeira, J. Yániz, M. Núñez-de-Murga, and C. Soler. 2018. CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 30:810-819. doi:10.1071/RD17551

Broekhuijse, M.L., E. Šoštarić, H. Feitsma, and B.M. Gadella. 2011. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76:1473-1486. doi:10.1016/j.theriogenology.2011.05.040

Christensen, P., H. Stryhn, and C. Hansen. 2005. Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology 63:992-1003. doi:10.1016/J.THERIOGENOLOGY.2004.05.026

Contri, A., C. Valorz, M. Faustini, L. Wegher, and A. Carluccio. 2010. Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 74:424-435. doi:10.1016/j.theriogenology.2010.02.025.

David, G., C. Serres, and P. Jouannet. 1981. Kinematics of human spermatozoa. Mol. Reprod. Dev. 4(2):83-95. doi:10.1002/mrd.1120040202

Del-Gallego, R., S. Sadeghi, E. Blasco, C. Soler, J.L. Yániz, and M.A. Silvestre. 2017. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 177:97-104. doi:10.1016/j.anireprosci.2016.12.010

Douglas-Hamilton, D.H., N.G. Smith, C.E. Kuster, J.P. Vermeiden, and G.C. Althouse. 2005. Capillary-loaded particle fluid dynamics: effect on estimation of sperm concentration. J. Androl. 26(1):115-22.

Ehlers, J., M. Behr, H. Bollwein, M. Beyerbach, and D. Waberski. 2011. Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76:448-454. doi:10.1016/j.theriogenology.2011.02.021

Gill, H.S., K. Arsdalen, J. Hypolite, R.M. Levin, and J.V. Ruzich. 1988. Comparative study of two computerized semen motility analyzers1: vergleichende studie an zwei verschiedenen computer-samen-analysern. Andrologia 20:433-440. doi:10.1111/j.1439-0272.1988.tb00721.x

Gloria, A., A. Carluccio, A. Contri, L. Wegher, C. Valorz, and D. Robbe. 2013. The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology 1:879-885. doi:10.1111/j.2047-2927.2013.00121.x

Hoogewijs, M.K., S.P. de-Vliegher, J.L. Govaere, C. De Schauwer, A. De Kruif, and A. Van-Soom. 2012. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine. Vet. J. 44:542-549. doi:10.1111/j.2042-3306.2011.00523.x

Jasko, D.J., D.H. Lein, and R.H. Foote. 1990. A comparison of two computer-assisted semen analysis instruments for the evaluation of sperm motion characteristics in the stallion. J. Androl. 11:453-459. doi:10.1002/j.1939-4640.1990.tb00176.x

Kraemer, M., C. Fillion, B. Martin-Pont, and J. Auger. 1998. Factors influencing human sperm kinematic measurements by the celltrak computer-assisted sperm analysis system. Hum. Reprod. 13(3):611-619. doi:10.1093/humrep/13.3.611

Krause, W. 1995. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum. Reprod. 1:60-66. doi:10.1093/humrep/10.suppl_1.60

Kuster, C. 2005. Sperm concentration determination between hemacytometric and CASA systems: Why they can be different? Theriogenology 64:614-617. doi:10.1016/J.THERIOGENOLOGY.2005.05.047

Lannou, D., J.F. Griveau, J.P. Pichon, and J.C. Le-Quero. 1992. Effects of chamber depth on the motion pattern of human spermatozoa in semen or in capacitating medium. Hum. Reprod. 7:1417-1421. doi:10.1093/oxfordjournals.humrep.a137585

Len, J.A., J.A. Jenkins, B.E. Eilts, D.L. Paccamonti, S.K. Lyle, and G. Hosgood. 2010. Immediate and delayed (after cooling) effects of centrifugation on equine sperm. Theriogenology 73:225-231. doi:10.1016/J.THERIOGENOLOGY.2009.09.003

Lenz, R.W., M.E. Kjelland, K. VonderHaar, T.M. Swannack, and J.F. Moreno. 2011. A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89:383-388. doi:10.2527/jas.2010-3056

Loomis, P.R., and J.K. Graham. 2008. Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 105:119-128. doi:10.1016/J.ANIREPROSCI.2007.11.010

Makler, A. 1978. A new chamber for rapid sperm count and motility estimation. Fertil. Steril. 30:313-318. doi:10.1016/S0015-0282(16)43518-1

Massányi, P., P. Chrenek, N. Lukáč, A. Makarevich, A. Ostro, P. Šafarik, J. Živčak, and J. Bulla. 2008. Comparison of different evaluation chambers for analysis of rabbit spermatozoa motility parameters using CASA system. Slovak. J. Anim. Sci. 41(2):60-66.

Olds-Clarke, P., H.M. Baer, and W.L. Gerber. 1990. Human sperm motion analysis by automatic (Hamilton–Thorn Motility Analyzer) and manual (Image-80) digitization systems. J. Androl. 11:52-58.

Ortega-Ferrusola, C., B. Macías, V. Suárez, J. Gallardo-Bolaños, L. González-Fernández, J. Tapia, H. Rodríguez, and F. Peña. 2009. Identification of sperm subpopulations in stallion ejaculates: changes after cryopreservation and comparison with traditional statistics. Reprod. Domest. Anim. 44:419-423. doi:10.1111/j.1439-0531.2008.01097.x

Palacín, I., S. Vicente-Fiel, P. Santolaria, and J.L. Yániz. 2013. Standardization of CASA sperm motility assessment in the ram. Small Ruminant Res. 112:128-135. doi:10.1016/j.smallrumres.2012.12.014

Peng, N., X. Zou, and L. Li. 2015. Comparison of different counting chambers using a computer-assisted semen analyzer. Syst. Biol. Reprod. Med. 61:307-313. doi:10.3109/19396368.2015.1063175

Prathalingam, N.S., W.V. Holt, S.G. Revell, S. Jones, and P.F. Watson. 2006. The precision and accuracy of six different methods to determine sperm concentration. J. Androl. 27:257-262. doi: 10.2164/jandrol.05112

Rijsselaere, T., A. Van-Soom, D. Maes, and A. Kruif. 2003. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60:1553-1568. doi:10.1016/S0093-691X(03)00171-7

Shivaji, S., J. Peedicayil, and L.G. Devi. 1995. Analysis of the motility parameters of in vitro hyperactivated hamster spermatozoa. Mol. Reprod. Dev. 42:233-247. doi:10.1002/mrd.1080420213

Simonik, O., J. Sichtar, A. Krejcarkova, R. Rajmon, L. Stadnik, J. Beran, M. Dolezalova, and Z. Biniova. 2015. Computer assisted sperm analysis – the relationship to bull field fertility, possible errors and their impact on outputs: a review. Indian J. Anim. Sci. 85:3-11.

Smith, S.C., and G.C. England. 2001. Effect of technical settings and semen handling upon motility characteristics of dog spermatozoa measured using computer-aided sperm analysis. J. Reprod. Fertil. Suppl. 57:151-9.

Soler, C., M. Fuentes, M. Sancho, A. García, M. Núñez-de-Murga, and J. Núñez-de-Murga. 2012. Effect of counting chamber on seminal parameters, analyzing with the ISASv1®. Rev. Int. Androl. 10(4):132-138. doi:10.1016/S1698-031X(12)70069-9

Soler, C., J. Picazo-Bueno, V. Micó, A. Valverde, D. Bompart, F.J. Blasco, J.G. Álvarez, and A. García-Molina. 2018. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 30:924-934. doi:10.1071/RD17467

Spizziri, B.E., M.H. Fox, J.E. Bruemmer, E.L. Squires, and J.K. Graham. 2010. Cholesterol-loaded-cyclodextrins and fertility potential of stallions spermatozoa. Anim. Reprod. Sci. 118:255-264. doi:10.1016/J.ANIREPROSCI.2009.08.001

Tejerina, F., K. Buranaamnuay, F. Saravia, M. Wallgren, and H. Rodriguez-Martinez. 2008. Assessment of motility of ejaculated, liquid-stored boar spermatozoa using computerized instruments. Theriogenology 69:1129-1138. doi:10.1016/j.theriogenology.2008.01.027

Tomlinson, M., J. Turner, G. Powell, and D. Sakkas. 2001. One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods? Hum. Reprod. 16(1):121-124. doi:10.1093/humrep/16.1.121

Vasseur, P., and R.G. Cox. 1976. The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mechanics 78:385-413. doi:10.1017/S0022112076002498

Verstegen, J., M. Iguer-Ouada, and K. Onclin. 2002. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57:149-79. doi:10.1016/S0093-691X(01)00664-1

Waite, J.A., C.C. Love, S.P. Brinsko, S.R. Teague, J.L. Salazar, S.S. Mancill, and D.D. Varner. 2008. Factors impacting equine sperm recovery rate and quality following cushioned centrifugation. Theriogenology 70:704-714. doi:10.1016/j.theriogenology.2008.04.047

World Health Organization. 2010. WHO laboratory manual for the examination and processing of human semen. 5th ed. World Health Organization, Geneva, SUI.



How to Cite

Valverde, A., & Madrigal-Valverde, M. (2019). Assessment of counting chambers on boar sperm parameters analyzed by a CASA-Mot system. Agronomía Mesoamericana, 30(2), 447–458.