Oligogalacturonides as an alternative to increase nitrogenous nutrition and growth in common bean (Phaseolus vulgaris L.)

Authors

  • Danurys Lara-Acosta Instituto Nacional de Ciencias Agrícolas, Mayabeque, Cuba
  • Mario Ramírez-Yañez Universidad Nacional Autónoma de México, Morelos, Mexico
  • Alfonso Leija-Salas Universidad Nacional Autónoma de México, Morelos, Mexico
  • Georgina Hernández-Delgado Universidad Nacional Autónoma de México, Morelos, Mexico
  • María C. Nápoles-García Instituto Nacional de Ciencias Agrícolas, Mayabeque, Cuba
  • Alejandro B. Falcón-Rodríguez Instituto Nacional de Ciencias Agrícolas, Mayabeque, Cuba

DOI:

https://doi.org/10.15517/am.2023.53817

Keywords:

legume, biological nitrogen fixation, biostimulant

Abstract

Introduction. Bean production is limited by the availability of nitrogen in the soil and its low efficiency in biological nitrogen fixation. The application of a bio-stimulant based on oligogalacturonides (Pectimorf®) is considered an alternative to improve nitrogen nutrition in early stages of growth, but its effectiveness in later stages of cultivation is unknown. Objective. To determine the effect of Pectimorf® on indicators related to biological nitrogen fixation and the growth of common bean plants bio-fertilized with Azofert®-F during the R5 growth stage (pre-flowering). Materials and methods. The research was carried out at the Genomic Sciences Center of the Universidad Nacional Autónoma de México (October 2018-March 2019) and at the Instituto Nacional de Ciencias Agrícolas en Cuba (November-December 2019). Experiments were carried out under controlled and semi-controlled conditions, evaluating the application of 10 mg L-1 of Pectimorf® to seeds along with Azofert®-F and foliar spraying at 5 and 100 mg L-1 on bio-fertilized plants. Plants treated only with Azofert® were used as a control. Nodulation, indicators of biological nitrogen fixation, and plant growth were evaluated. Results. Under controlled conditions, Pectimorf® stimulated nodulation, root development, and increased nitrogenase activity. In the semi-controlled conditions, it favored nodulation and growth, with the seed treatment and foliar spraying (100 mg L-1) standing out. Pectimorf® also increased the ureides synthesis in the nodules and the nitrogen content in the leaves. This product showed more than a 15 % effectiveness in relation to bio-fertilization. Conclusions. The application of Pectimorf® improved biological nitrogen fixation and growth during pre-flowering stage of common bean.

Downloads

Download data is not yet available.

References

Barraza, A., Coss-Navarrete, E. L., Vizuet-de-Rueda, J. C., Martínez-Aguilar, K., Hernández-Chávez, J. L., Ordaz-Ortiz, J. J., Winkler, R., Tiessen, A., & Alvarez-Venegas, R. (2018). Downregulation of PvTRX1h increases nodule number and affects auxin, starch, and metabolic fingerprints in the common bean (Phaseolus vulgaris L.). Plant Science, 274, 45–58. https://doi.org/10.1016/j.plantsci.2018.05.006

Bensmihen, S. (2015). Hormonal control of lateral root and nodule development in legumes. Plants, 4(3), 523–547. https://doi.org/10.3390/plants4030523

Cabrera, J. C. (Inventor). (2003). Procedimiento de obtención de una mezcla de oligosacáridos pécticos estimuladora del enraizamiento vegetal (Patente de Cuba 22859). Ministerio de Comercio.

Cerqueira Rodrigues, A., Gomes Silveira, J. A., Bonifacio, A., & Barreto Figueiredo, M. do V. (2013). Metabolism of nitrogen and carbon: Optimization of biological nitrogen fixation and cowpea development. Soil Biology & Biochemistry, 67, 226–234. https://doi.org/10.1016/j.soilbio.2013.09.001

Dell’Amico, J., Morales, D., Jerez, E., Rodríguez, P., Álvarez, I., Martín, R., & Días, Y. (2017). Efecto de dos variantes de riego y aplicaciones foliares de Pectimorf® en el desarrollo del frijol (Phaseolus vulgaris L.). Cultivos Tropicales, 38(3), 129–134. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/18

Divito, G. A., & Sadras, V. O. (2014). How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Research, 156, 161–171. https://doi.org/10.1016/j.fcr.2013.11.004

Espinoza, A., Valdivia, R., & Pilarte, F. (2019). Instructivo 3. Manejo de la fertilización de maíz y frijol -4R, basado en la evaluación visual de suelos. Catholic Relief Services.

Faure, B., Arteaga, G., Benítez, R., & Monzón, O. (2017). Guía técnica para la producción sostenible del frijol común (Phaseolus vulagaris L.). Instituto de Investigaciones de Granos.

Faure, B., García, A, Placido, L, & Benítez, R. (2016). Manual para la producción sostenible del frijol común. Molinos S. A., & Instituto de Investigaciones de Granos.

Fernández, L., Shagarodsky, T., Cristóbal, R., Nuñoz, L., Gil, J. F., Sánchez, Y., González, M., Moreno, V., Fundora, Z. M., Castiñeiras, L., León, N., Rodríguez, A., Acuña, G., & Walón, L. (2014). Catálogo de variedades INIFAT. Ediciones Instituto de Investigaciones Fundamentales en Agricultura Tropical.

Ghanbari, A. A., Shakiba, M. R., Toorchi, M., & Choukan, R. (2013). Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and Chitti beans (Phaseolus vulgaris) under water deficit conditions. Australian Journal of Crops Science, 7(5), 706–712. https://search.informit.org/doi/10.3316/informit.364966564049239

Gordon Young, E., & Conway, C. F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry, 142(2), 839–853. https://doi.org/10.1016/S0021-9258(18)45082-X

Hardy, R. W. F., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiology, 43(8), 1185–1207. https://doi.org/10.1104/pp.43.8.1185

Hernández, J. A., Pérez, J. M., Bosch, I. D., & Castro, S. N. (2015). Clasificación de los suelos de Cuba. Ediciones Instituto Nacional de Ciencias Agrícolas.

Hungria, M., & Kaschuk, G. (2014). Regulation of N2 fixation and NO3−/NH4+ assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environmental and Experimental Botany, 98, 32–39. https://doi.org/10.1016/j.envexpbot.2013.10.010

Izaguirre-Mayoral, M. L., Lazarovits, G., & Baral, B. (2018). Ureide metabolism in plant-associated bacteria: purine plant-bacteria interactive scenarios under nitrogen deficiency. Plant Soil, 428, 1–34. https://doi.org/10.1007/s11104-018-3674-x

Izquierdo, H., Diosdado, E., González Cepero, M. C., Núñez, M. de la C., Cabrera, J. C., Hernández, R. M., González, J. L., Hernández, M. M., Héctor, E. F., Gómez, R., Proenza, R., & Velásquez, M. (2016). Contributions to knowledge of the functioning of national bioestimulators in plant biotechnology processes. Biotecnología Aplicada, 33(3), 3511–3516.

Kakraliya, S. K., Singh, U., Bohra, A., Choudhary, K. K., Kumar, S., Swaroop Meena, R., & Jat, M. L. (2018). Nitrogen and legumes: A Meta-analysis. In R. Swaroop Meena, A. Das, G. Singh Yadav, & R. Lal (Eds.), Legumes for soil health and sustainable management (pp. 279–304). Springer, Singapore. https://doi.org/10.1007/978-981-13-0253-4_9

Kohlen, W., Pin Ng, J. L., Deinum, E. E., & Mathesius, U. (2018). Auxin transport, metabolism, and signaling during nodule initiation: indeterminate and determinate nodules. Journal of Experimental Botany, 69(2), 229–244. https://doi.org/10.1093/jxb/erx308

Koskey, G., Mburu, S. W., Njeru, E. M., Kimiti, J. M., Ombori, O., & Maingi, J. M. (2017). Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Frontiers in Plant Science, 8, Article 443. https://doi.org/10.3389/fpls.2017.00443

Lara, D., Ramírez, M., Leija, A., Costales-Menéndez, D., Nápoles, M. C., Falcón-Rodríguez, A. B., & Hernández, G. (2021). Effect of a mix of oligogalacturonides on symbiotic nitrogen fixation in common bean. Agronomía Colombiana, 39(1), 30–36. https://doi.org/10.15446/agron.colomb.v39n1.92081

Lara-Acosta, D., Costales-Menéndez, D., Nápoles-García, M. C., & Falcón-Rodríguez, A. (2019). Pectimorf® y Azofert-F® en el crecimiento de plantas de frijol (Phaseolus vulgaris L.). Cultivos Tropicales, 40(4), Artículo e05. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1529

Li, X., Lei, M., Yan, Z., Wang, Q., Chen, A., Sun, J., Luo, D., & Wang, Y. (2014). The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytologist, 201(2), 531–544. https://doi.org/10.1111/nph.12550

Magaña Lemus, D., Gaucín Piedra, S. D., & Flores Rico, L. D. (2015). Análisis Sectorial y de la dinámica de los precios del frijol en México. Compendium: Cuadernos de Economía y Administración, 2(3), 1–21. http://www.revistas.espol.edu.ec/index.php/compendium/article/view/13

Martínez-Romero, E., Segovia, L., Martins Mercante, F., Franco, A. A., Graham, P., & Pardo, M. A. (1991). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, 41(3), 417–426. https://doi.org/10.1099/00207713-41-3-417

Motaroki Menge, E., Mugendi Njeru, E., Koskey, G., & Maing, J. (2018). Rhizobial inoculation methods affect the nodulation and plant growth traits of host plant genotypes: A case study of common bean Phaseolus vulgaris L. germplasms cultivated by smallholder farmers in Eastern Kenya. Advances in Agricultural Science, 6(3), 77–94.

Nápoles, M. C. (Inventor). (2002, diciembre). Medio de cultivo para Bradyrhizobium japonicum. Biopreparado resultante (Patente de Cuba 22797). Ministerio de Comercio.

Nápoles García, M. C., Cabrera Pino, J. C., Onderwater, R., Wattiez, R., Hernández Forte, I., Martínez González, L., & Núñez Vázquez, M. (2016). Señales en la interacción Rhizobium leguminosarum-frijol común (Phaseolus vulgaris L.). Cultivos Tropicales, 37(2), 37–44. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1228

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). FAOSTAT. Cultivos y productos de ganadería. https://www.fao.org/faostat/es/#data/QC

Pádua Oliveira, D., Alves de Figueiredo, M., Lima Soares, B., Stivanin Texeira, O. H., Dias Martins, F. A., Rufini, M., Peixoto Chain, C., Pereira Reis, R., Ramalho de Morais, A., de Souza Moreira, M., & Bastos de Andrade, M. J. (2017). Acid tolerant Rhizobium strains contribute to increasing the yield and profitability of common bean in tropical soils. Journal of Soil Science and Plant Nutrition, 17(4), 922–934. https://doi.org/10.4067/S0718-95162017000400007

Paneque Pérez, V. M., Calaña Navarro, J. C., Calderón Vldés, M., Borges Benítez, Y., Hernández García, T. C., & Caruncho Contreras, M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. Ediciones Instituto Nacional de Ciencias Agrícolas.

Pérez, R., Aranguren, M., Luzbet, R., Reynaldo, I. M., & Rodríguez, J. (2013). Aportes a la producción intensiva de plantas de guayabo (Psidium guajava L.) a partir de esquejes en los viveros comerciales. CitriFrut, 30(2), 11–16.

Polania, J., Poschenrieder, C., Rao, I., & Beebe, S. (2016). Estimation of phenotypic variability in symbiotic nitrogen fixationability of common bean under drought stress using 15N natural abundance in grain. European Journal of Agronomy, 79, 66–73. https://doi.org/10.1016/j.eja.2016.05.014

Ramírez, M., Guillén, G., Fuentes, S. I., Iñiguez, L. P., Aparicio-Fabre, R., Zamorano-Sánchez, Encarnación-Guevara, S., Panzeri, D., Castiglioni, B., Cremonesi, P., Strozzi, F., Stellac, A., Girarda, L., Sparvoli, F., & Hernández, G. (2013). Transcript profiling of common bean nodules subjected to oxidative stress. Physiologia Plantarum, 149(3), 389–407. https://doi.org/10.1111/ppl.12040

Ramírez-Bahena, M. H., Peix, A., Velázquez, E., & Bedmar, E. J. (2016). Historia de la investigación en la simbiosis leguminosa-bacteria: una perspectiva didáctica. Arbor, 192, Article a319. https://doi.org/10.3989/arbor.2016.779n3009

Samavat, S., Samavat, S., Mafakheri, S., & Javad Shakouri, M. (2012). Promoting common bean growth and nitrogen fixation by the co-inoculation of Rhizobium and Pseudomonas fluorescens isolates. Bulgarian Journal of Agricultural Science, 18(3), 387–395. http://www.agrojournal.org/18/03-11-12.pdf

Santillana, N., Arellano, C., & Zúñiga, D. (2005). Capacidad del Rhizobium de promover el crecimiento en plantas de tomate (Lycopersicon esculentum Miller). Ecología Aplicada, 4(1–2), 47–51.

Santos, A., Beovides, Y., Mollineda, M., López, J., Basail, M., Gutiérrez, Y., Rayas, A., Medero, V., Rodríguez, D., & Bauta, M. (2017). Efecto del Pectimorf® como biorregulador del crecimiento en la micropropagación del cultivar ‘INIVIT MX-2008’ (Xanthosoma sagittifolium (L.) Schott). Revista Agricultura Tropical, 3(1), 52–63.

Summerfield, R. J., Huxley, P. A., & Minchin, F. R. (1977). Plant husbandry and management techniques for growing grain legumes under simulated tropical conditions in controlled environments. Experimental Agriculture, 13(1), 81–92. https://doi.org/10.1017/S0014479700007638

Xin, C., Yan, Q. -w., Sun, J. -l., Shuang, X., Xie, F. -c., & Chen, Y. -j. (2014). Research progress on nitrogen use and plant growth. Journal of Northeast Agricultural University, 21(2), 68–74. https://doi.org/10.1016/S1006-8104(14)60036-2

Yong, T. -w., Chen, P., Dong, Q., Du, Q., Yang, F., Wang, X. -c., Liu, W. -g., & Yang, W. -y. (2018). Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. Journal of Integrative Agriculture, 17(3), 664–676. https://doi.org/10.1016/S2095-3119(17)61836-7

Published

2023-08-25

How to Cite

Lara-Acosta, D., Ramírez-Yañez, M., Leija-Salas, A., Hernández-Delgado, G., Nápoles-García, M. C., & Falcón-Rodríguez, A. B. (2023). Oligogalacturonides as an alternative to increase nitrogenous nutrition and growth in common bean (Phaseolus vulgaris L.). Agronomía Mesoamericana, 34(3), 53817. https://doi.org/10.15517/am.2023.53817