Mycorrhizal inoculants on sweet potato (Ipomoea batata) in Eutric Cambisol soils of Cuba

Authors

  • Alberto Espinosa-Cuéllar Instituto de Investigaciones de Viandas Tropicales (INIVIT), Santo Domingo, Villa Clara, Cuba.
  • Ramon Rivera Instituto Nacional de Ciencias Agricolas, Mayabeque, Cuba https://orcid.org/0000-0001-6621-7446
  • Mario Varela-Nualles Instituto Nacional de Ciencias Agrícolas, Mayabeque, Cuba
  • Alberto Pérez-Díaz Universidad de Guantánamo, Guantánamo, Cuba https://orcid.org/0000-0002-0966-7341

DOI:

https://doi.org/10.15517/am.2023.53725

Keywords:

Ipomoea batatas, arbuscular mycorrhizae, fungal spores, mycorrhizal infection, yields

Abstract

 

Introduction. The effective use of mycorrhizal inoculants poses a challenge for Cuban agriculture. Sweet potato is an important crop for human and animal nutrition, being a mycorrhizal crop with a successful breeding program. Objective. To determine whether all sweet potato cultivars respond to inoculation and if the effectiveness of inoculants varies among cultivars and planting seasons. Materials and methods. Two experiments were conducted during 2010 - 2012 in Eutric Cambisols in Villa Clara, Cuba, one for each planting season and repeated twice. Seventeen cultivars were evaluated for their response to the application of three inoculants, in the presence of a half the fertilization dose, and three non-inoculated treatments with fertilization levels of 0, 50, and 100 % of the nitrogen, phosphorus, and potassium dose (100 % NPK). A split plot design was used. Root yields, colonization frequency, and mycorrizal spore production were evaluated as response variables. Results. Cultivars responded positively to inoculation and fertilization, showing differences in yields. However, the highest yields were obtained when inoculated with Rhizoglomus irregulare/ INCAM-11, surpassing (p≤0.05) those obtained with only 50 % of the NPK dose. In the rainy season with higher yields, the differentiation between inoculants was more pronounced, and in thirteen and nine of the cultivars, yields obtained with INCAM-11 were higher (p≤0.05) to those obtained with Glomus cubense/ INCAM-4 and 100 % NPK, respectively. In the dry season, no significant differences were found between yields obtained by inoculating INCAM-11 or INCAM-4 or applying 100 % NPK. In both seasons, inoculation with Funneliformis mosseae/ INCAM-2 was consistently lower. Colonization frequencies and spore production were always higher (p≤0.05) when INCAM-11 was inoculated. Conclusion. Under these soil conditions evaluated, inoculation with INCAM-11 showed higher effectiviveness for all cultivars and planting seasons, resulting in a higher yields and mycorrhizal performance indicators.

 

Downloads

Download data is not yet available.

References

Abdelhalim, T., Jannoura, R., & Joergensen, R. G. (2019). Arbuscular mycorrhizal dependency and phosphorus responsiveness of released, landrace and wild Sudanese sorghum genotypes. Archives of Agronomy and Soil Science, 66(5), 706–716. https://doi.org/10.1080/03650340.2019.1633577

Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 25(1), 13–24. https://doi.org/10.1007/s00572-014-0585-4

Bender, S. F., Wagg, C., & van der Heidjen, M. G. A. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31(6), 440–452. https://doi.org/10.1016/j.tree.2016.02.016

Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, Article 1559. https://doi.org/10.3389/fmicb.2015.01559

Bonareri Oruru, M., Mugendi Njeru, E., Pasquet, R., & Runo, S. (2018). Response of a wild-type and modern cowpea cultivars to arbuscular mycorrhizal inoculation in sterilized and non-sterilized soil. Journal of Plant Nutrition, 41(1), 90–101. https://doi.org/10.1080/01904167.2017.1381728

Chu, Q., Wang, X., Yang, Y., Chen, F., Zhang, F., & Feng, G. (2013). Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza, 23(6), 497–505. https://doi.org/10.1007/s00572-013-0492-0

Dibut Alvarez, B., Martínez Viera, R., Hernández Barrueta, G., López Gutiérrez, M., Martínez Cruz, A., Bach Alvárez, T., Rivera Espinosa, R., Hernández Rodríguez, A., Fernández Martín, F., Medina Basso, N., & Herrera, R. A. (2011). Surgimiento y desarrollo en Cuba de la red de producción de biofertilizantes y bioestimuladores. Agrotecnia de Cuba, 35(1), 61–72. https://bit.ly/3Jqh3bI

Espinosa-Cuéllar, A., Rivera-Espinosa, R., Ruíz-Martínez, L., Espinosa-Cuéllar, E., & Lago-Gato, Y. (2019). Manejo de precedentes inoculados con HMA para micorrizar eficientemente el boniato (Ipomoea batatas L.) en sucesión. Cultivos Tropicales, 40(2), Artículo e03. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1508/html

Fernández, F., Gómez, R., Vanegas, L. F., Martínez M. A., de la Noval, B., & Rivera, R. (2000). Producto inoculante micorrizógeno (Certificado de Patente CU 22641). Oficina Cubana de la Propiedad Industrial. https://bit.ly/3w7Ma45

Food and Agriculture Organization of the United Nations. (2019). FAOSTAT Statistical Database. https://www.fao.org/faostat/en/#data/QCL. Accessed August 2022

Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84(3), 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

González, P. J. (2014). Manejo efectivo de la simbiosis micorrízica arbuscular vía inoculación y la fertilización mineral en pastos del género Brachiaria [Tesis doctoral, Universidad Agraria de La Habana], Repositorio Digital Geotech. http://repositorio.geotech.cu/jspui/handle/1234/3632

González, P. J., Ramírez, J. F., Rivera, R., Hernández, A., Plana, R., Crespo, G., & Rosales, P. R. (2015). Management of arbuscular mycorrhizal inoculation for the establishment, maintenance and recovery of grasslands. Cuban Journal of Agricultural Science, 49(4), 535–540. http://cjascience.com/index.php/CJAS/article/view/499

González Cañizares, P. J., Ramírez Pedroso, J. F., Rivera Espinosa, R., Hernández Jiménez, A., & Crespo Flores, G. (2016). Efectividad de la inoculación de hongos micorrízicos arbusculares en dos leguminosas forrajeras cultivadas en dos tipos de suelos. Tropical Grasslands-Forrajes Tropicales, 4(2), 82–90. https://doi.org/10.17138/TGFT(4)82-90

Guo, J., Ling, N., Chen, Z., Xue, C., Li, L., Liu, L., Gao, L., Wang, M., Ruan, Y., Guo, S., Vandenkoornhuyse, P., & Shen, Q. (2020). Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytologist, 226(1), 232-243. https://doi.org/10.1111/nph.16345

Hart, M. M, Antunes, P. M., Bala Chaudhary, V., & Abbott, L. K. (2018). Fungal inoculants in the field: Is the reward greater than the risk? Functional Ecology, 32(1), 126–135. https://doi.org/10.1111/1365-2435.12976

Herrera-Peraza, R. A., Furrazola, E., Ferrer, R. L., Fernández Valle, R., & Torres Arias, Y. (2004). Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba. Revista CENIC Ciencias Biológicas, 35(2), 113–123. https://revista.cnic.cu/index.php/RevBiol/article/view/1199

Jansa, J., Forczek, S. T., Rozmoš, M., Püschel, D., Bukovská, P., & Hršelová, H. (2019). Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chemical and Biological Technologies in Agriculture, 6, Article 10. https://doi.org/10.1186/s40538-019-0147-2

Janos, D. P. (2007). Plant responsiveness to mycorrhiza differs from dependence upon mycorrhizas. Mycorrhiza, 17(2), 75–91. https://doi.org/10.1007/s00572-006-0094-1

Jiang, F., Zhang, L., Zhou, J., George, T. S., & Feng, G. (2021). Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytologist, 230(1), 304–315. https://doi.org/10.1111/nph.17081

João, J. P., Espinosa Cuéllar, A., Ruíz Martínez, L., Simó González, J., & Rivera Espinosa, R. (2016). Efectividad de cepas de HMA en el cultivo de la yuca (Manihot esculenta Crantz) en dos tipos de suelos. Cultivos Tropicales, 37(1), 48–56. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1153

Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C. R., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A., Vandenkoornhuyse, P., Jansa, J., & Bücking, H. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044), 880–882. https://doi.org/10.1126/science.1208473

Koch, A. M., Antunes, P. M., Maherali, H., Hart, M. M., & Klironomos, J. N. (2017). Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist, 214(3), 1330–1337. https://doi.org/10.1111/nph.14465

Lanfranco, L., Fiorilli, V., & Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220(4), 1031–1046. https://doi.org/10.1111/nph.15230

Lehmann, A., Leifheit, E. F., & Rillig, M. C. (2017). Mycorrhizas and soil aggregation. In C. Johnson, C. Gerhing, & J. Jansa (Eds.), Mycorrhizal mediation of soil (pp. 241–262). Freie Universität Berlin. https://doi.org/10.1016/B978-0-12-804312-7.00014-0

Ministerio de la Agricultura. (2012). Instructivo técnico sobre el cultivo del boniato. Ministerio de la Agricultura.

Mukhongo, R. W., Tumuhairwe, J. B., Ebanyat, P., AbdelGadir, A. H., Thuita, M., & Masso, C. (2017). Combined application of biofertilizers and inorganic nutrients improves sweet potato yields. Frontiers in Plant Science, 8, Article 219. https://doi.org/10.3389/fpls.2017.00219

Oficina Nacional de Estadísticas e Información (Ed.). (2022). Anuario Estadístico de Cuba 2021. Agricultura, Ganadería, Silvicultura y Pesca (Capítulo 9). Oficina Nacional de Estadísticas e Información.

Ortas, I., & Bilgili, G. (2022). Mycorrhizal species selectivity of sweet sorghum genotypes and their effect on nutrients uptake.Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 72(1), 733–743. https://doi.org/10.1080/09064710.2022.2063167

Ortaş¸ I., & Rafique, M. (2017). The mechanisms of nutrient uptake by arbuscular mycorrhizae. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza - Nutrient uptake, biocontrol, ecorestoration (pp. 1–20). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-68867-1_1

Paneque, V. M., Calaña, J. M., Calderón, M., Borges, Y., Hernández, T. C., & Caruncho, C. M. (2010). Manual de técnicas analíticas para análisis de suelo, foliar, abonos orgánicos y fertilizantes químicos. Ediciones Instituto Nacional de Ciencias Agrícolas.

Parihar, M., Rakshit, A., Singh Meena, V., Kumar Gupta, V., Rana, K., Choudhary, M., Tiwari, G., Kumar Mishra, P., Pattanayak, A., Kumar Bisht, J., Singh Jatav, S., Khati, P., & Singh Jatav, H. (2020). The potential of arbuscular mycorrhizal fungi in C cycling: a review. Archives of Microbiology, 202(7), 1581–1596. https://doi.org/10.1007/s00203-020-01915-x

Pascual, J. A. (2016). The use of arbuscular mycorrhizal fungi in combination with Trichoderma spp. in sustainable agriculture. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations for sustainable agriculture (pp. 137–146). Springer India. https://doi.org/10.1007/978-81-322-2779-3_7

Pellegrino, E., Öpik, M., Bonari, E., & Ercoli L. (2015). Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology & Biochemistry, 84, 210–217. https://doi.org/10.1016/j.soilbio.2015.02.020

Phillips, J. M., & Hayman, D. E. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3

Rillig, M. C., Aguilar-Trigueros, C. A., Camenzind, T., Cavagnaro, R. T., Degrune, F., Hohmann, P., Lammel, D. R., Mansour, I., Roy, J., van der Heijden, M. G. A., & Yang, G. (2019). Why farmers should manage the arbuscular mycorrhizal simbiosis. New Phytologist, 222(3), 1171–1175. https://doi.org/10.1111/nph.15602

Rivera, R., Fernández, F., Fernández, K., Ruiz, L., Sánchez, C., & Riera, M. (2007). Advances in the management of effective arbuscular mycorrhizal symbiosis in tropical ecosystems. In C. Hamel, & C. Plenchette (Eds.), Mycorrhizae in crop production (pp. 151–196). Haworth Press.

Rivera Espinosa, R., González Cañizares, P. J., Ruiz Martínez, L., Martin Alonso, G., & Cabrera Rodríguez, A. (2023). The strategic combination of mycorrhizal inoculants, fertilizers and green manures improve crop productivity. Review of cuban research. In Q. -S. Wu, Y. -N. Zou, Y. -J. He, & N. Zhou (Eds.), New research on mycorrhizal fungus (pp. 55–112). Nova Publishers.

Ruíz Martínez, L., Simó González, J., Rodríguez, S., & Rivera Espinosa, R. (2012). Las micorrizas en cultivos tropicales. Una contribución a la sostenibilidad agroalimentaria. Editorial Académica Española.

Ryan, M. H., Kidd, D. R., Sandral, G. A., Yang, Z., Lambers, H., Culvenor, R. A., Stefanski, A., Nichols, P. G. H., Haling, R. H., & Simpson, R. J. (2016). High variation in the percentage of root length colonized by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). Applied Soil Ecolology, 98, 221–232. http://dx.doi.org/10.1016/j.apsoil.2015.10.019

Sakha, M. A., Jefwa, J., Gweyi-Onyango, J. P. (2019). Effects of arbuscular mycorrhizal fungal inoculation on growth and yield of two sweet potato varieties. Journal of Agriculture and Ecology Research International, 18(3), 1–8. https//doi.org/10.9734/jaeri/2019/v18i330063

Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2017). Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science, 8, Article 2204. https://doi.org/10.3389/fpls.2017.02204

Simó González J. E., Rivera Espinosa, R., Ruíz Martínez, L., & Martín Alonso, G. (2020). The integration of AMF inoculants, green manure and organo-mineral fertilization, in banana plantations on calcic haplic phaeozems. Tropical and Subtropical Agroecosystems, 23, Article 08. http://dx.doi.org/10.56369/tsaes.2882

Simó González, J. E., Ruíz Martínez, L. A., & Rivera Espinosa, R. (2017). Inoculación de hongos micorrizógenos arbusculares (HMA) y relaciones suelo Pardo-abonos orgánicos en la aclimatización de vitroplantas de banano. Cultivos Tropicales, 38(3), 102–111. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/15

Thirkell, T. J., Grimmer, M., James, L., Pastok, D., Allary, T., Elliott, A., Paveley, N., Daniell, T., & Field, K. J. (2022). Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food and Energy Security, 11(2), Article e370. https://doi.org/10.1002/fes3.370

Toppo, N. N., & Maiti, D. (2017). Capturing plant genetic potential of upland rice for exploiting arbuscular mycorrhiza responsiveness to improve rice variety for higher phosphorus (P) acquisition under p limiting environments. In A. Varma, R. Prasad, & N. Tuteja (Eds.), Mycorrhiza - nutrient uptake, biocontrol, ecorestoration (pp. 45–73). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-68867-1_3

van der Heijden, M. G. A., Martin, F. M., Selosse, M. -A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/nph.13288

Wang, X. -x., Zhang, M., Sheng, J. -d., Feng, G., & Kuyper, T. W. (2022). Breeding against mycorrhizal symbiosis: modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply. Journal of Integrative Agriculture, 22(3), 701–705. https://doi.org/10.1016/j.jia.2022.08.004

Willis, A., Rodrigues, B. F., & Harris, P. J. C. (2013). The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 32(1), 1–20. https://doi.org/10.1080/07352689.2012.683375

World Reference Base for Soil Resources. (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, update 2015. [World soil resources Reports 106]. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i3794en/I3794en.pdf

Zangaro, W., & Lirio Rondina, A. B. (2016). Arbuscular mycorrhizas in different successional stages in some Brazilian ecosystems. In M.C. Pagano (Ed.), Recent advances on mycorrhizal fungi, fungal biology (pp. 47–62). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-24355-9_5

Zhang, S., Lehmann, A., Zheng, W., You, Z., & Rillig, M. C. (2019). Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist, 222(1), 543–545. https://doi.org/10.1111/nph.15570

Published

2023-08-25

How to Cite

Espinosa-Cuéllar , A. ., Rivera, R. ., Varela-Nualles, M., & Pérez-Díaz , A. (2023). Mycorrhizal inoculants on sweet potato (Ipomoea batata) in Eutric Cambisol soils of Cuba. Agronomía Mesoamericana, 34(3), 53725. https://doi.org/10.15517/am.2023.53725

Most read articles by the same author(s)