Physiological seed quality of carrot (Daucus carota L.) assessed by vigor testing

Authors

DOI:

https://doi.org/10.15517/am.v33iEspecial.51541

Keywords:

electrical conductivity, humidity, image analysis, correlation, germination, physiological quality

Abstract

Introduction. In carrot cultivation direct sowing is practiced because the seedling cannot resist the stress of transplanting. It is essential to use seeds that germinate in a maximum of seven days and uniformly. Seeds vigor is associated with yield performance in the field and, at the international level there are different test to measure it. However, in carrot, the methodologies are still scarce and are not standardized. Objective. To determine the physiological quality in seeds of two varieties of carrot (Daucus carota L.) by mean of vigor tests. Materials and methods. This research was carried out at the Centro para Investigaciones en Granos y Semillas (CIGRAS) of the Universidad de Costa Rica in 2018. Seeds of Bangor and Triunfo varieties with moisture percentages of 7 %, 10 %, and 13 % were used. The vigor tests used were the following: radicle protrusion, first germination count (seven days), accelerated aging, electrical conductivity, and the germination analysis by digital images. Pearson’s correlation analyses were performed between the variables studied. Results. Significant correlation coefficients (Pearson’s r) were observed for electrical conductivity with variables obtained from the image analysis: t10 (r=0.83), t50 (r=0.87), and the area under the curve (r=-0.72). Trough the electrical conductivity test, it was determined that the Bangor lot had greater vigor than the Triunfo lot (Tukey, p≤0.05). Conclusions. The analysis of digital images and the electrical conductivity tests allowed measuring the vigor in seed lots of Bangor and Triunfo varieties, and complementing them with germination results to determine their physiological quality.

Downloads

Download data is not yet available.

References

Al-Maskri, A. Y., Khan, M. M., Khan, I. A., & Al-Habsi, K. (2003). Effect of accelerated ageing on viability, vigor (RGR), lipid peroxidation and leakage in carrot (Daucus carota L.) seeds. International Journal of Agriculture and Biology, 5(4), 580–584. http://www.fspublishers.org/published_papers/7582_..pdf

Alonso-Esquivel, M., Ortiz-López, Y., Ramos-Ramírez, R., Oliva-Diaz, H., & Capote-del Sol, M. (2011). Dormancia en semillas de papaya cv. Maradol roja durante el almacenamiento. Agronomía Mesoamericana, 22(2), 351–357. https://doi.org/10.15517/am.v22i2.11828

Álvarez Medina, A., Martínez Solís, J., Rodríguez Pérez, J. E., & PeñaOrtega, M. G. (2011). Relación entre calidad fisiológica de semillas de jitomate (Lycopersicum esculentum) con el establecimiento en almácigo. Revista Chapingo Serie Horticultura, 17(2), 57–62. https://doi.org/10.5154/r.rchsh.2011.17.045

Alves Domiciano, C., Olivastro Teixeira, S., Camillo de Carvalho, M. A., Mitsuo Yamashita, O., & Dallacort, R. (2015). Teste de condutividade elétrica para avaliação da qualidade fisiológica de sementes de cenoura. Enciclopédia Biosfera, 11(21), 1809–1817. http://www.conhecer.org.br/enciclop/2015b/agrarias/teste%20de%20condutividade.pdf

Aristondo Etxeberria, J. (2010). Algoritmo de reconocimiento de forma y color para una plataforma robótica (Tesis de maestría, Universidad del País Vasco). Repositorio de la Universidad del País Vasco. https://www.ehu.eus/documents/1545039/1570316/10jaristondo.pdf

Bolaños Herrera, A. (1998). Introducción a la olericultura. Editorial Universidad Estatal a Distancia.

Cancho Ccaico, S. (2017). Condiciones que incrementan la germinación de semillas y el vigor de plantines de Cinchona krauseana L. Andersson y C. calisaya Wedd. (Rubiaceae) [Tesis de pregrado, Universidad Nacional Mayor de San Marcos] Archivo digital de la Universidad Nacional Mayor de San Marcos. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/7449

da Silva Almeida, A., Deuner, C., Terra Borges, C., Manghello, G. E., Madruga de Tunes, L., & Amaral Villale, F. (2014). Accelerated aging in tomato seeds. American Journal of Plant Sciences, 5(11), 1651–1656. http://doi.org/10.4236/ajps.2014.511179

Das, R., Thapa, U., Debnath, S., Lyngdoh, Y. A., & Mallick, D. (2014). Evaluation of french bean (Phaseolus vulgaris L.) genotypes for seed production. Journal of Applied and Natural Science, 6(2), 594–598. https://doi.org/10.31018/jans.v6i2.502

de Marchí, J. L., & Moure Cicero, S. (2017). Use of the software seed vigor imaging system (SVIS®) for assessing vigor of carrot. Scientia Agricola, 74(6), 469–473. https://doi.org/10.1590/1678-992X-2016-0220

Dell‘Aquilla, A. (2004). Application of a computer–aided image analysis system to evaluate seed germination under different environmental conditions. Italian Journal of Agronomy, 8(1), 51–62.

del Valle Gallo, C. (2008). Calidad fisiológica y efecto de la presencia de semillas verdes de soja (Glycine max L.) en lotes destinados a simiente [Tesis de maestría, Universidad Nacional de Córdoba]. Archivo digital de la Universidad Nacional de Córdoba. https://bit.ly/3uaD9H3

Elias, S. G., Copeland, L. O., McDonald, M. B., & Baalbaki, R. Z. (2012). Seed testing: Principles and practices. Michigan State University Press. https://www.jstor.org/stable/10.14321/j.ctt7zt51m

Finch-Savage, W. E., & Bassel, G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. https://doi.org/10.1093/jxb/erv490

Gaviola, J. L. (Ed.). (2013). Manual de producción de zanahoria. Ediciones Instituto Nacional de Tecnología Agropecuaria. https://bit.ly/3OSbt1D

George, R. A. T. (2009). Vegetable seed production (3th ed.). CAB International. https://www.cabi.org/bookshop/book/9781845935214/

Gomes Junior, F. G., Carmignani Pescarin Chamma, H. M., & Moure Cicero, S. (2014). Automated image analysis of seedlings for vigor evaluation of common bean seeds. Acta Scientiarum, 36(2), 195–200. https://doi.org/10.4025/actasciagron.v36i2.21957

Hernández Zavaleta, J. L. (2015). Eliminación de latencia en semilla de zacate Rhodes (Chloris gayana L.) utilizando ácido giberélico a 750 ppm a diferentes tiempos de inmersión [Tesis de pregrado, Universidad Autónoma Agraria Antonio Narro]. Repositorio de la Universidad Autónoma Agraria Antonio Narro. http://repositorio.uaaan.mx:8080/xmlui/handle/123456789/7596

Hong, T. D., Linington, S., & Ellis, R. H. (1996). Seed storage behaviour: A compendium (Handbooks for Genebanks: N° 4). International Plant Genetic Resources Institute. https://bit.ly/3NwK0Bk

International Seed Testing Association. (2017). International rules for seed testing. https://bit.ly/3NtAPSi

Jardel Szareski, V., & Zanatta Aumonde, T.(2018). Adaptability and stability of wheat genotypes according to the phenotypic index of seed vigor. Pesquisa Agropecuaria Brasileira, 53(06), 727–735. https://doi.org/10.1590/S0100-204X2018000600009

Joosen, R. V. L., Kodde, J., Willems, L. A. J., Ligterink, W., van der Plas, L. H. W., & Hilhorst, H. W. M. (2010). Germinator: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal, 62(1), 148–159. https://doi.org/10.1111/j.1365-313X.2009.04116.x

La Serna Palomino, A., & Román Concha, U. (2009). Técnicas de segmentación en procesamiento digital de imágenes. Revista de Ingeniería en Sistemas de Informática, 6(2), 9–16. https://bit.ly/3y3kAWe

Marcos Filho, M. J. (2011). Testes de vigor: dimensão e perspectivas. Seednews, 15(1), 22–27. https://bit.ly/3AbQ9jw

Marcos Filho, M. J. (2015). Seed vigor testing: An overview of the past, present and future perspective. Scientia Agricola, 72(4), 363–374. https://doi.org/10.1590/0103-9016-2015-0007

Marcos-Filho, M. (2015). Fisiologia de sementes de plantas cultivadas. FEALQ. https://loja.abrates.org.br/fisiologia-de-sementes-de-plantas

Marcos-Filho, M. J., Bennett, M. A., McDonald, M. B., Evans, A. F., & Grassbaugh, E. M. (2006). Assessment of melon seed vigour by an automated computer imaging system compared to traditional procedures. Seed Science and Technology, 34(2), 485–497. https://doi.org/10.15258/sst.2006.34.2.23

Neumann Silva, V., Benevenga Sarmento, M., Siveira, A. C., Santos Silva, C., & Moure Cicero, S. (2013). Avaliação da morfologia interna de sementes de Acca sellowiana O. Berg por meio de análise de imagens. Revista Brasileira de Fruticultura, 35(4), 1158–1169. https://doi.org/10.1590/S0100-29452013000400027

Neves Dias, M. A., Mocelin Urano, A. K., Bueno da Silva, D., & Moure Cicero, S. (2018). Influence of soybean seed moisture content in the response to seed treatment in soybean. Revista de Agricultura Neotropical, 5(2), 91–96. https://doi.org/10.32404/rean.v5i2.1415

Oliveira Diniz, F., Silva Reis, M., dos Santos Dias, L. A., Fontes Aráujo, E., Sediyama, T., & Atsumi Sediyama, C. (2013). Physiological quality of soybean seeds of cultivars submitted to harvesting delay and its association with seedling emergence in the field. Journal of Seed Science, 35(2), 147–152. https://doi.org/10.1590/S2317-15372013000200002

Peske, S. T., Villela, F. A., & Meneghello, G. E. (2019). Sementes: fundamentos científicos e tecnológicos (4a ed.). Becker e Peske.

Rizvi, A., Ashraf, M., & Ghafoor, A. (2013). Genetic divergence for seedling traits in tomato (Solanum lycopersicum). International Journal of Agriculture and Biology, 15, 451–457. http://www.fspublishers.org/published_papers/64275_..pdf

Shah, F. S., Watson, C. E., & Cabrera, E. R. (2002). Seed vigor testing of subtropical corn hybrids. Mississippi Agricultural and Forestry Experiment Station, 23(2), 1–6. https://www.mafes.msstate.edu/publications/research-reports/rr23-2.pdf

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019

Sediyama, T. (Ed.). (2013). Tecnologias de produção de sementes de soja (3ra ed.). Editora Mecenas.

Silva, V. N., & Cicero, S. M. (2014). Análise de imagens de plântulas para avaliação do potencial fisiológico de sementes de berinjela. Horticultura Brasileira, 32(2), 145–151. https://doi.org/10.1590/S0102-05362014000200004

Tatić, M., Balešević-Tubić, S., Ðorđević, V., Miklič, V., Vujaković, M., & Ðukić, V. (2012). Vigor of sunflower and soybean aging seed. HELIA, 35(56), 119–126. https://doi.org/10.2298/hel1256119t

Thakur, A. K., Vikram, A., Kanwar, H. S., & Bhardwaj, R. K. (2015). Effect of storage and umbel orders on seed quality of european carrot cultivar solan rachna under cold desert conditions of himachal pradesh. International Journal of Bio-resource and Stress Management, 6(1), 63–67. http://doi.org/10.5958/0976-4038.2015.00011.1

Terra Werner, E., Lopes, J. C., Gomes Junior, D., Luber, J., & Teixeira do Amaral, J. A. (2013). Accelerated aging test to evaluate the quality of crambe (Crambe abyssinica Hochst-Brassicaceae) seed physiology. Idesia (Arica), 31(1), 35–43. http://doi.org/10.4067/S0718-34292013000100005

Torres, S. B. (2002). Métodos para avaliação do potencial fisiológico de sementes de melão [Dissertação doutorado, Universidade de São Paulo]. Repositório da Universidade de São Paulo. https://bit.ly/3xZT4ci

Yousof, F. I., Abeer El-Ward, A. I. & Abo EL-Dahab, M. S. (2016). Efficiency of some seed vigor tests for field emergence prediction of onion seed. Journal of Plant Production, 7(11), 1173–1178. https://doi.org/10.21608/jpp.2016.46962

Published

2022-10-19

How to Cite

Vindas Quesada, E. J., Monge Vargas, A. A., Porras Martínez, C., & Barboza Barquero, L. (2022). Physiological seed quality of carrot (Daucus carota L.) assessed by vigor testing. Agronomía Mesoamericana, 33(Especial), 51541. https://doi.org/10.15517/am.v33iEspecial.51541

Most read articles by the same author(s)