Composición nutricional, contenido de compuestos bioactivos y capacidad antioxidante hidrofílica de frutas costarricenses seleccionadas

Autores/as

DOI:

https://doi.org/10.15517/am.v33i2.46175

Palabras clave:

composición proximal, carotenoides, fibra dietética, polifenoles, antioxidantes

Resumen

Introducción. El consumo de frutas y vegetales correlaciona inversamente con la incidencia de enfermedades degenerativas como diabetes, enfermedades cardiovasculares, ciertos tipos de cáncer y cataratas asociadas al envejecimiento, dada la acción de compuestos bioactivos como vitamina C, polifenoles y carotenoides. Objetivo. Evaluar el perfil nutricional de once frutas cultivadas en Costa Rica. Materiales y métodos. Este estudio se realizó en el Centro Nacional de Ciencia y Tecnología de Alimentos de la Universidad de Costa Rica, en el 2010. Se determinó el contenido de fibra dietética, polifenoles totales, reportados como equivalentes de ácido gálico (EAG), carotenoides totales expresados como µg β-caroteno y la capacidad hidrofílica de absorción de radicales de oxígeno (H-ORACFL) de once frutas tradicionales o subutilizadas: banano (Musa AAA subgrupo Cavendish cv. ‘Grand Naine’), mora tropical de altura (Rubus adenotrichos cv. ‘vino con espinas rojas’), melón (Cucumis melo cv. ‘Veracruz’), higo (Ficus carica cv. ‘Brown-Turkey’), mango (Mangifera indica cv. ‘Tommy Atkins’), papaya (Carica papaya híbrido ‘Pococí’), pejibaye (Bactris gasipaes H.B.K), piña (Ananas comosus cv. híbrido MD-2 ‘Gold’), membrillo (Cydonia oblonga), jocote (Spondias purpurea cv. Tronador) y tomate de árbol rojo (Solanum betaceum). Las frutas fueron recolectadas en localidades de San José, Cartago, Alajuela, Guanacaste y Limón. Resultados. Seis de las frutas estudiadas presentaron contenidos de fibra dietética entre 4,2 y 6,6 g 100 g-1. La mora tropical de altura presentó el mayor contenido de compuestos fenólicos totales (538 ± 97 mg EAG 100 g-1) y la mayor actividad antioxidante (62,1 ± 4,0 μmol equivalentes de Trolox g-1), y el pejibaye cocido presentó el mayor contenido de carotenoides (72 ± 4 µg β-caroteno g). Conclusión. Se evidencia los altos contenidos de compuestos bioactivos en frutas comúnmente cultivadas en Costa Rica, características nutricionales asociadas a beneficios para la salud, respaldados por estudios clínicos y epidemiológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta-Montoya, Ó., Vaillant, F., Cozzano, S., Mertz, C., Pérez, A. M., & Castro, M. V. (2010). Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chemistry, 119(4), 1497–1501. https://doi.org/10.1016/j.foodchem.2009.09.032

Acosta-Quezada, P. G., Riofrío-Cuenca, T., Rojas, J., Vilanova, S., Plazas, M., & Prohens, J. (2016). Phenological growth stages of tree tomato (Solanum betaceum Cav.), an emerging fruit crop, according to the basic and extended BBCH scales. Scientia Horticulturae, 199, 216–223. https://doi.org/10.1016/j.scienta.2015.12.045

Afam, I. O. J., Henry, S.,Thakhani, T., Adewale, O. O., Henry, O. U., & Tonna, A. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1), 41–67. https://doi.org/10.1080/10942912.2020.1866597

Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051

Anderson, J. W., Baird, P., Davis Richard H. J., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x

Association of Official Analytical Chemists. (1999). Official methods of analysis of AOAC International (16th ed.). Association of Official Analytical Chemists.

Blanco Metzler, A., Montero Campos, M., Fernández Piedra, M., & Mora-Uripí, J. (1992). Pejibaye palm fruit contribution to human nutrition. Principes, 36(2), 66–69.

Carvalho, G. B. M., Silva, D. P., Santos, J. C., Izário Filho, H. J., Vicente, A. A., Teixeira, J. A., Felipe, M. das G., & Almeida e Silva, J. B. (2009). Total soluble solids from banana: evaluation and optimization of extraction parameters. Applied Biochemistry and Biotechnology, 153(1-3), 34–43. https://doi.org/10.1007/s12010-008-8462-2

Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171. https://doi.org/10.1111/1541-4337.12049

Cilla, A., Bosch, L., Barberá, R., & Alegría, A. (2018). Effect of processing on the bioaccessibility of bioactive compounds – a review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, 68, 3–15. https://doi.org/10.1016/j.jfca.2017.01.009

Clerici, M. T. P. S., & Carvalho-Silva, L. B. (2011). Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International, 44(7), 1658–1670. https://doi.org/10.1016/j.foodres.2011.04.020

Codex Alimentarius Commission. (2013). Guidelines for use of nutrition and health claims. Cac/Gl 23-1997. Food and Agriculture Organization. Retrieved September, 2020, from https://www.fao.org/ag/humannutrition/32444-09f5545b8abe9a0c3baf01a4502ac36e4.pdf

Corral-Aguayo, R. D., Yahia, E. M., Carrillo-Lopez, A., & González-Aguilar, G. (2008). Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. Journal of Agricultural and Food Chemistry, 56(22), 10498–10504. https://doi.org/10.1021/jf801983r

Dai, F. J., & Chau, C. F. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25(1), 37–42. https://doi.org/10.1016/j.jfda.2016.09.006

de Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156(1), 362–368. https://doi.org/10.1016/j.foodchem.2014.01.125

de Souza, V. R., Pereira, P. A. P., Queiroz, F., Borges, S. V., & de Deus Souza Carneiro, J. (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chemistry, 134(1), 381–386. https://doi.org/10.1016/j.foodchem.2012.02.191

Delwiche, S. R., Mekwatanakarn, W., & Wang, C. Y. (2008). Soluble solids and simple sugars measurement in intact mango using near infrared spectroscopy. HortTechnology, 18(3), 410–416. https://doi.org/10.21273/HORTTECH.18.3.410

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077

Fernández-García, E., Carvajal-Lérida, I., Jarén-Galán, M., Garrido-Fernández, J., Pérez-Gálvez, A., & Hornero-Méndez, D. (2012). Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Research International, 46(2), 438–450. https://doi.org/10.1016/j.foodres.2011.06.007

Fernández-Piedra, M., Blanco-Metzler, A., & Mora-Urpí, J. (1995). Contenido de ácidos grasos en cuatro poblaciones de pejibaye, Bactris gasipaes (Palmae). Revista de Biología Tropical, 43(1-3), 61–66.

Food and Agriculture Organization. (2014). Banana market review and banana statistics 2012-2013. Retrieved September, 2020, from http://www.fao.org/3/i3627e/i3627e.pdf

Food and Drug Administration. (2013). Guidance for industry: Food labeling guide. Retrieved September, 2020, from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide

Freiman, Z. E., Rodov, V., Yablovitz, Z., Horev, B., & Flaishman, M. A. (2012). Preharvest application of 1-methylcyclopropene inhibits ripening and improves keeping quality of ‘Brown Turkey’ figs (Ficus carica L.). Scientia Horticulturae, 138, 266–272. https://doi.org/10.1016/j.scienta.2012.01.007

Ganesan, K., Jayachandran, M., & Xu, B. (2018). A critical review on hepatoprotective effects of bioactive food components. Critical Reviews in Food Science and Nutrition, 58(7), 1165–1229. https://doi.org/10.1080/10408398.2016.1244154

Georgé, S., Brat, P., Alter, P., & Amiot, M. J. (2005). Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and Food Chemistry, 53(5), 1370–1373. https://doi.org/10.1021/jf048396b

Hamauzu, Y., Yasui, H., Inno, T., Kume, C., & Omanyuda, M. (2005). Phenolic profile, antioxidant property, and anti-influenza viral activity of chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. Journal of Agricultural and Food Chemistry, 53(4), 928–934. https://doi.org/10.1021/jf0494635

Hassimotto, N. M. A., Da Mota, R. V., Cordenunsi, B. R., & Lajolo, F. M. (2008). Physico-chemical characterization and bioactive compounds of blackberry fruits (Rubus sp.) grown in Brazil. Ciência e Tecnologia de Alimentos, 28(3), 702–708. http://doi.org/10.1590/S0101-20612008000300029

Hernández, Y., Lobo, M. G., & González, M. (2006). Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96(4), 654–664. https://doi.org/10.1016/j.foodchem.2005.04.012

Hounhouigan, M. H., Linnemann, A. R., Soumanou, M. M., & Van Boekel, M. A. J. S. (2014). Effect of processing on the quality of pineapple juice. Food Reviews International, 30(2), 112–133. https://doi.org/10.1080/87559129.2014.883632

Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444. https://doi.org/10.1021/jf0201529

Ikram, M. M. M., Ridwani, S., Putri, S. P., & Fukusaki, E. (2020). GC-MS based metabolite profiling to monitor ripening-specific metabolites in pineapple (Ananas comosus). Metabolites, 10(4), Article 134. https://doi.org/10.3390/metabo10040134

Jatunov, S., Quesada, S., & Díaz, C. (2010). Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Archivos Latinoamericanos de Nutrición, 60(1), 99–104.

Ji, W., Koutsidis, G., Luo, R., Hutchings, J., Akhtar, M., Megias, F., & Butterworth, M. (2013). A digital imaging method for measuring banana ripeness. Color Research and Application, 38, 364–374. https://doi.org/10.1002/col.21741

Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables - the millennium’s health. International Journal of Food Science and Technology, 36(7), 703–725. https://doi.org/10.1111/j.1365-2621.2001.00513.x

Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., & Tai, T. C. (2013). Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients, 5(10), 3779–3827. https://doi.org/10.3390/nu5103779

Lara-Abia, S., Lobo-Rodrigo, G., Welti-Chanes, J., & Cano, M.P. (2021). Carotenoid and carotenoid ester profile and their deposition in plastids in fruits of new papaya (Carica papaya L.) varieties from the Canary Islands. Foods, 10(2), Article 434. https://doi.org/10.3390/foods10020434

Leterme, P., Buldgen, A., Estrada, F., & Londoño, A. M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rainforest of Colombia. Food Chemistry, 95(4), 644–652. https://doi.org/10.1016/j.foodchem.2005.02.003

Li, B. W., Andrews, K. W., & Pehrsson, P. R. (2002). Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. Journal of Food Composition and Analysis, 15(6), 715–723. https://doi.org/10.1006/jfca.2002.1096

Luna-Guzmán, I., & Barrett, D. M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology and Technology, 19(1), 61–72. https://doi.org/10.1016/S0925-5214(00)00079-X

Mahattanatawee, K., Manthey, J. A., Luzio, G., Talcott, S. T., Goodner, K., & Baldwin, E. A. (2006). Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 54(19), 7355–7363. https://doi.org/10.1021/jf060566s

Mallawaarachchi, M. A. L. N., Madhujith, T., Suriyagoda, L. D. B., & Pushpakumara, D. K. N. G. (2021). Antioxidant efficacy of selected underutilized fruit species grown in Sri Lanka. Tropical Agricultural Research, 32(1), 68–80. http://doi.org/10.4038/tar.v32i1.8443

Maldonado-Astudillo, Y. I., Alia-Tejacal, I., Núñez-Colín, C. A., Jiménez-Hernández, J., Pelayo-Zaldívar, C., López-Martínez, V., Andrade-Rodríguez, M., Bautista-Baños, S., & Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2014). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727

Mei, X., Mu, T. H., & Han, J. J. (2010). Composition and physicochemical properties of dietary fiber extracted from residues of 10 varieties of sweet potato by a sieving method. Journal of Agricultural and Food Chemistry, 58(12), 7305–7310. https://doi.org/10.1021/jf101021s

Mertz, C., Gancel, A. L., Gunata, Z., Alter, P., Dhuique-Mayer, C., Vaillant, F., Perez, A. M., Ruales, J., & Brat, P. (2009). Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. Journal of Food Composition and Analysis, 22(5), 381–387. https://doi.org/10.1016/j.jfca.2008.06.008

Moo-Huchin, V. M., Estrada-Mota, I., Estrada-León, R., Cuevas-Glory, L., Ortiz-Vázquez, E., Vargas, M. de L. V., Betancur-Ancona, D., & Sauri-Duch, E. (2014). Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chemistry, 152(1), 508–515. https://doi.org/10.1016/j.foodchem.2013.12.013

Moreno, J., Cozzano, S., Pérez, A. M., Arcia, P., & Curutchet, A. (2019). Coffee pulp waste as a functional ingredient: effect on salty cookies quality. Journal of Food and Nutrition Research, 7(9), 632–638. https://doi.org/10.12691/jfnr-7-9-2

Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1–6. https://doi.org/10.1016/j.ijbiomac.2013.06.044

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 35, 27986–28006. https://doi.org/10.1039/C4RA13315C

Palafox-Carlos, H., Yahia, E., Islas-Osuna, M. A., Gutierrez-Martinez P., Robles-Sánchez, M., González-Aguilar, G. A. (2012). Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, 135, 7–13. https://doi.org/10.1016/j.scienta.2011.11.027

Ramsaroop, R. E. S., & Saulo, A. A. (2007). Comparative consumer and physicochemical analysis of del monte hawai`i gold and smooth cayenne pineapple cultivars. Journal of Food Quality, 30, 135–159. https://doi.org/10.1111/j.1745-4557.2007.00111.x

Ramulu, P., & Udayasekhara Rao, P. (2003). Total, insoluble and soluble dietary fiber contents of Indian fruits. Journal of Food Composition and Analysis, 16(6), 677–685. https://doi.org/10.1016/S0889-1575(03)00095-4

Rasheed, M., Hussain, I., Rafiq, S., Hayat, I., Qayyum, A., Ishaq, S., & Awan, M. S. (2018). Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. International Journal of Food Properties, 21(1), 2320–2327. https://doi.org/10.1080/10942912.2018.1514631

Rocha Ribeiro, S. M., Queiroz, J. H., de Queiroz, M. E., Campos, F. M., & Pinheiro Sant’Ana, H. M. (2007). Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods for Human Nutrition, 62, 13–17. https://doi.org/10.1007/s11130-006-0035-3

Rodriguez-Amaya, D. B. (1996). Assessment of the provitamin A contents of foods— The Brazilian experience. Journal of Food Composition and Analysis, 9(3), 196–230. https://doi.org/10.1006/jfca.1996.0028

Rodríguez-Roque, M. J., De Ancos, B., Sánchez-Vega, R., Sánchez-Moreno, C., Elez-Martínez, P., & Martín-Belloso, O. (2020). In vitro bioaccessibility of isoflavones from a soymilk-based beverage as affected by thermal and non-thermal processing. Innovative Food Science and Emerging Technologies, 66, Article 102504. https://doi.org/10.1016/j.ifset.2020.102504

Rojas-Garbanzo, C., Gleichenhagen, M., Heller, A., Esquivel, P., Schulze-Kaysers, N., & Schieber, A. (2017). Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. “Criolla”) during fruit ripening. Journal of Agricultural and Food Chemistry, 65(18), 3737–3747. https://doi.org/10.1021/acs.jafc.6b04560

Rojas-Garbanzo, C., Pérez, A. M., Bustos-Carmona, J., & Vaillant, F. (2011). Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Research International, 44(7), 2377–2384. https://doi.org/10.1016/j.foodres.2011.02.045

Rojas-Garbanzo, C., Pérez, A. M., Pineda Castro, M. L., & Vaillant, F. (2012). Major physicochemical and antioxidant changes during peach-palm (Bactris gasipaes H.B.K.) flour processing. Fruits, 67(6), 415–427. https://doi.org/10.1051/fruits/2012035

Sangsoy, K., Mongkolporn, O., Imsabai, W., & Luengwilai, K. (2017). Papaya carotenoids increased in Oxisols soils. Agriculture and Natural Resources, 51(4), 253–261. https://doi.org/10.1016/j.anres.2017.10.003

Schiedt, K., & Liaaen-Jensen, S. (1995). Isolation and analysis. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Basel: Carotenoids, Volume 1A: Isolation and Analysis (pp. 81-108). Birkhäuser Verlag.

Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., & Heber, D. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56(4), 1415–1422. https://doi.org/10.1021/jf073035s

Soto, M., Pérez, A. M., Cerdas, M. M., Vaillant, F., & Acosta, O. (2019). Physicochemical characteristics and polyphenolic compounds of cultivated blackberries in Costa Rica. Journal of Berry Research, 9(2), 283–296. https://doi.org/10.3233/JBR-180353

Soto, M., Brenes, M., Jiménez, N., Cortés, C., Umaña, G., & Pérez, A.M. (2021). Selection of optimal ripening stage of papaya fruit (Carica papaya L.) and vacuum frying conditions for chips making. CyTA - Journal of Food, 19(1), 273–286. https://doi.org/10.1080/19476337.2021.1893823

Swallah, M.S., Sun, H., Affoh, R., Fu, H., & Yu, H. (2020). Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. International Journal of Food Science, 2020, Article 9081686. https://doi.org/10.1155/2020/9081686

Torres, A. (2012). Physical, chemical and bioactive compounds of tree tomato (Cyphomandra betacea). Archivos Latinoamericanos de Nutrición, 62(4), 381–388.

Vaillant, F. (2020). Chapter 25 – Blackberries. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 407–422). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00025-8

Wang, S. Y., & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146. https://doi.org/10.1021/jf9908345

World Health Organization. (2020). Promoting fruit and vegetable consumption. Retrieved September, 2020, from https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/activities/technical-support-to-member-states/promoting-fruit-and-vegetable-consumption

Yahia, E. M., Ramirez-Padilla, G., & Carrillo-Lopez, A. (2009). Carotenoid content of five fruits and vegetables and their bioconversion to vitamin A measured by retinol accumulation in rat livers. ISHS Acta Horticulture, 841, 619–624. https://doi.org/10.17660/ActaHortic.2009.841.97

Yánez Bustamante, W. D., Quevedo Guerrero, J. N., García Batista, R. M., Herrera Reyes, S. N., & Luna Romero, Á.E. (2020). Determinación de la relación carga química grados brix en hojas y frutos de banano clon williams (Musa x paradisiaca). Universidad y Sociedad, 12(5), 421–430.

Yuyama, L. K., Aguiar, J. P., Yuyama, K., Clement, C., Macedo, S. H., Fávaro, D. I., Afonso, C., Vasconcellos, M. B., Pimentel, S. A., Badolato E. S. G., & Vannucchi, H. (2003). Chemical composition of the fruit mesocarp of three peach palm (Bactris gasipaes) populations grown in Central Amazonia, Brazil. International Journal of Food Science and Nutrition, 54(1), 49–56. https://doi.org/10.1080/096374803/000061994

Publicado

2022-02-21

Cómo citar

Montero, M. L., Rojas-Garbanzo, C., Usaga, J., & Pérez, A. M. (2022). Composición nutricional, contenido de compuestos bioactivos y capacidad antioxidante hidrofílica de frutas costarricenses seleccionadas. Agronomía Mesoamericana, 33(2), 46175. https://doi.org/10.15517/am.v33i2.46175

Artículos más leídos del mismo autor/a