Multilocus typing sequences in Lactobacillus casei isolates from pineapple peels silages




lactic acid bacteria, fermentation process, nutritional quality, urea, multilocus typing sequences


Introduction. Lactobacillus casei is characterized by adapting to the environment during the fermentation process. Objective. To characterize with multilocus typing sequences (MTLS) isolates of L. casei present in pineapple peel silage with increasing levels of urea. Materials and methods. During 2017 and using an unrestricted random design, twenty silos (2 kg) were prepared. Every five bags, 0, 0.5, 1 and 1.5 % urea (w/w on fresh basis) were added. After thirty days, a sample was taken from each repetition for bromatological analysis. Dry matter (DM), crude protein (PC), non-fibrous carbohydrates, fiber in acid detergent (ADF), fiber in neutral detergent (NDF), in vitro digestibility of dry matter (IVDDM), hemicellulose, ethereal extract (EE), ashes, ammonia nitrogen, and pH. The Lactic Acid Bacteria (LAB) count was determined for each one of the treatments. Identification of LABs was carried out using the 16S rRNA sequence. The isolates of L. casei were analyzed using MTLS. Results. The four evaluated treatments did not present significant differences in DM (12.10 to 12.86 %), ADF (31.44 to 32.18 %), NDF (58.46 to 58.56 %), hemicellulose (26.36 to 27.02 %), EE (2.45 to 2.96 %), ash (4.96 to 5.12 %), ammonia nitrogen (0.45 to 0.49 %) and pH (3.36 at 3.48). Not so, in CP (6.94 to 9.12 %), and IVDDMS (82.84 to 84.72 %). The addition of urea was associated with changes in the BAL populations (6.56 to 6.90 CFU). Seven isolates of L. casei were identified and typed with five different genes. Between two (polA) and five (nrdD, pgm, mutL) alleles were found. This allowed the identification of a total of six different type sequences (ST) in the Costa Rican isolates. Conclusion. The L. casei isolates were found to be related to bacteria from the gastrointestinal tract in humans.


Download data is not yet available.

Author Biography

Natalia Barboza, Universidad de Costa Rica

Docente e Investigadora


Altschul, S. F., Gish, W., Miller, W., Myersand, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.

Association of Official Analytical Chemist. (1998). Official methods of analysis of AOAC International (16th Ed.). Association of Official Analytical Chemist.

Arshad, F. A., Mehmood, R., Hussain, S., Annus-Khan, M., & Khan, M. S. (2018). Lactobacilli as probiotics and their isolation from different sources. British Journal of Research, 5(3), Article 43.

Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7(6), 1513-1523.

Bonfield, J. K., Smith, K. F., & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research, 23(24), 4992-4999.

Cai, H., Rodríguez, B. T., Zhang, W., Broadbent, J. R. & Steele, J. L. (2007). Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology, 153(8), 2655–2665.

Cai, H., Thompson, R., Budinich, M. F., Broadbent, J. R., & Steele, J. L. (2009). Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biology and Evolution, 1, 239-257. 10.1093/gbe/evp019

Chen, A., Guan, Y. J., Bustamante, M., Uribe, L., Uribe-Lorío, L., Roos, M. M., & Liu, Y. (2020). Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass and Bioenergy, 141, 105675.

Cubero, J. F., Rojas, A., & WingChing, R. (2010). Uso del inóculo microbial elaborado en finca en ensilaje de maíz (Zea mays). Valor nutricional y fermentativo. Agronomía Costarricense, 34(2), 237-250.

De la Cruz-Hernández, J. C., & Gutiérrez-Fernández, G. A. (2006). Alimentación de bovinos con ensilados de mezcla de banana de rechazo y raquis en diferentes proporciones. Avances en Investigación Agropecuaria, 10(3), 29-39.

Diancourt, L., Passet, V., Chervaux, C., Garault, P., Smokvina, T., & Brisse, S. (2007). Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Applied Environmental Microbiology, 73(20), 6601–6611.

Dicagno, R., Cardinalo, G., Minervini, G., Antonielli, L., Rizzello, C., Ricciuti, P., & Gobbetti, M. (2010). Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiology, 27(3), 381-389.

Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Bötter, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843–7853.

Elghandour, M. M., Adegbeye, M. J., Vallejo, L. H., Elahi, M. Y., Barbabosa-Pliego, A., Recillas-Morales, S., & Salem, A. Z. M. (2019). Role of dose dependent Lactobacillus farciminis on ruminal microflora biogases and fermentation activities of three silage based rations. Journal of Applied Microbiology, 127, 1627-1634.

Endo, A., Irisawa, T., Futagawa-Endo, Y., Sonomoto, K., Itoh, K., Takano, K., Okada, S., & Dicks, L.M. (2011). Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. International Journal of Systematic and Evolutionary Microbiology, 61(4), 898–902.

Endo, A., Tanizawa, Y., & Arita, M. (2019). Isolation and identification of lactic acid bacteria from environmental samples. In J. M. Walker (Ed.). Lactic acid bacteria. Methods in molecular biology (vol. 1887, pp. 3-13). Humana Press.

Endo, A., Tanizawa, Y., Tanaka, N., Maeno, S., Kumar, H., Shiwa, Y., Okada, S., Yoshikawa, H., Dicks, L., Nakagawa, J., & Arita, M. (2015). Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp. BMC Genomics, 16, Article 1117.

European Fruit Juice Association (2012). Liquid fruit market report.

Evivie, S. E., Huo, G. C., Igene, J. O., & Bian, X. (2017). Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food & Nutrition Research, 61, Article 1318034.

Feng, J., Jiang, Y., Li, M., Zhao, S., Zhang, Y., Li, X., Wang, H., Lin, G., Wang, H., Li, T., & Man, C. (2018). Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet. Archives of Microbiology, 200(7),1111-1121.

Fusco, V., Quero, G. M., Cho, G. S., Kabisch, J., Meske, D., Neve, H., Bockelmann, W., & Franz, C. M. (2015). The genus Weissella: Taxonomy, ecology and biotechnological potential. Frontiers in Microbiology, 6, Article 155.

Gowda, N. K. S., Vallesha, N. C., Awachat, V. B., Anandan, S., Pal, D. T., & Prasad, C.S. (2015). Study on evaluation of silage from pineapple (Ananas comosus) fruit residue as livestock feed. Tropical Animal Health and Production, 47, 557–561.

Guerra, P., Rúa, M. L., & Pastrana, L. (2001). Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, 70(3), 267-281.

Gutiérrez, F., Rojas-Bourrillon, A., Dormond, H., Poore, M., & WingChing-Jones, R. (2003). Características nutricionales y fermentativas de mezclas ensiladas de desechos de piña y avícolas. Agronomía Costarricense, 27(1), 79-89.

Hayek, S., & Ibrahim, S. (2013). Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 4(11A), 73-87.

Hernández-Chaverri, R., & Prado-Barragán, L. (2018). Impacto y oportunidades de biorrefineria de los desechos agrícolas del cultivo de piña (Ananas comosus) en Costa Rica. Cuadernos de Investigación UNED, 10(2), 455-468.

Jiménez, M. (2015). Desarrollo de una pulpa para uso industrial a partir de los residuos generados durante el procesamiento de jugo de piña en la empresa Florida Products S.A. [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica.

Kant, R., J. Blom, A. Palva, R. J. Siezen, & de Vos, W. M. (2011). Comparative genomics of Lactobacillus. Microbial Biotechnology, 4(3), 323–332.

Kung, L. Jr., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial and organoleptic components of silage. International Journal of Dairy Science, 101(5), 4020-4033.

Li, Y. Q., Tian, W. L., & Gu, C. T. (2020). Weissella sagaensis sp. Nov., isolated from traditional Chinese yogurt. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2485–2492.

Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

Licitra, G., Hernández, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science Technology, 57(4), 347-358.

López-Herrera, M., WingChing-Jones, R., & Rojas-Bourrillon, A. (2014). Metaanálisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agronomía Mesoamericana, 25(2), 383-392.

Mardalena, S., & Erina, S. (2016). Molecular characteristics and identification of lactic acid bacteria of pineapple waste as probiotics candidates for ruminants. Pakistan Journal of Nutrition, 15(6), 519–523.

McDonald, P. (1981). The biochemistry of silage. John Wiley& Sons Ltd.

Montero, G. (2016). Desarrollo de pellets mediante densificación con mezclas de residuos agrícolas de Costa Rica [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica.

Nascimento, L. C. S., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Probiotic potential and safety of enterococci strains. Annals of Microbiology, 69, 241–252.

National Research Council (2001). Nutrient requirements of dairy catlle (7th rev. Ed.). National academy press.

Ni, K., Wang, F., Zhu, B., Yang, J., Zhou, G., Pan, Y., Tao, Y., & Zhong, J. (2017). Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresources Technology, 238, 706–715.

O’Donnell, M. M., O’Toole, P. W., & Ross, R. P. (2013). Catabolic flexibility of mammalian-associated lactobacilli. Microbology Cell Factories, 12, Article 48.

Papizadeh, M., Rohani, M., Nahrevanian, H., Javadi, A., & Pourshafie, M. R. (2017). Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends. Microbial Pathogens, 111, 118–131.

Parra, R. (2010). Review: Bacterias acido lácticas: papel funcional de los alimentos. Facultad de Ciencias Agropecuarias, 8(1), 93-105.

Quesada, C. (2013). Determinación de las condiciones óptimas del tratamiento enzimático acoplado a un proceso de microfiltración tangencial para la obtención de jugo clarificado de piña en una empresa procesadora de frutas y vegetales [Tesis de Licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica.

Quesada-Solís, K., Alvarado-Aguilar, P., Sibaja-Ballestero, R., & Vega-Baudrit, J. (2005). Utilización de las fibras del rastrojo de piña (Ananas comusus, variedad champaka) como material de refuerzo en resinas de poliéster. Revista Iberoamericana de Polímeros, 6(2),157-179.

Rodríguez-Chacón, S., López-Herrera, M., WingChing-Jones, R., & Rojas-Bourrillón, A. (2014). Adición de melaza deshidratada y urea en ensilados de rastrojos de piña. Agronomía Mesoamericana, 25(2), 313-321.

Rojas-Bourrillón, A., Ugalde, H., & Aguirre, D. (1998). Efecto de la adición de fruto de pejibaye (Bactris gasipaes) sobre las características nutricionales del ensilaje de pasto gigante (Pennisetum purpureum). Agronomía Costarricense, 22(2), 145-151.

Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574.

Sáez, G. D., Flomenbaum, L., & Zárate, G. (2018). Lactic acid bacteria from argentinean fermented foods: Isolation and characterization for their potential use as starters for fermentation of vegetables. Food Technology and Biotechnology, 56(3), 398–410.

Salvetti, E., Harris, H.M.B., Felis, G., & O´Toole, P.W. (2018). Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the bases for reclassification. Applied Environmental Microbiology, 84, Article e00993-18.

Statistical Analysis System. (2011). The SAS system for Windows (Versión 9.3) [Software]. SAS Institute.

Secretaria Ejecutiva de Planificación Sectorial Agropecuaria. (2019). Boletín estadístico agropecuario (Serie cronológica 2016-2019, 30 Ed.). Secretaria Ejecutiva de Planificación Sectorial Agropecuaria.

Sharma, A., Lee, S., & Park, Y. (2020). Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Science and Biotechnology, 29, 1301–1318.

Stefanovic, E., & McAuliffe, O. (2018). Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics, 19, Article 205.

Tamura, K, Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.

Tobía, C., Rojas, A., Villalobos, E., Soto, H., & Uribe, L. (2004). Sustitución parcial del alimento balanceado por ensilaje de soya y su efecto en la producción y calidad de la leche de vaca, en el trópico húmedo de Costa Rica. Agronomía Costarricense, 28(2), 27-35.

Van Soest, P. J., & Robertson, J. B. (1985). Analysis of forages and fibrous food. As 613. A laboratory manual. Cornell University.

Verma, D., Garg, P. K., & Dubey, A. K. (2018). Insights into the human oral microbiome. Archives of Microbiology, 200, 525–540.

Weisburg, W. G., Barns, S. M., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703.

Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H., Mattarelli, P., O’Toole, P., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G., Gänzle, M., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), Article 4107.



How to Cite

WingChing Jones, R., Redondo Solano, M., Usaga, J., Uribe, L., & Barboza, N. (2021). Multilocus typing sequences in Lactobacillus casei isolates from pineapple peels silages. Agronomía Mesoamericana, 32(2), 508–522.