Silvopastoral systems: Mitigation of greenhouse gases in the Tropical Dry Forest - Colombia

Authors

DOI:

https://doi.org/10.15517/am.v32i3.43313

Keywords:

greenhouse gases, mitigation, soil properties, soil organic carbon, livestock production

Abstract

Introduction. Silvopastoral systems (SSP) play a leading role in soil carbon sequestration and greenhouse gas mitigation. Objective. To quantify the ecosystem services provided by four SSPs in comparison with a grass pasture in the middle valley of the Sinú river in Colombia. Materials and methods. Methane and nitrous oxide fluxes were measured using closed chambers, during a period of eight consecutive weeks (September to November, 2013). Soil organic carbon was also measured at two depths (0-5 and 5–15 cm), by the combustion method, and soil physicochemical variables were determined. The design corresponded to randomized complete blocks with five treatments and three replications. The treatments corresponded to four silvopastoral systems made up of different tree components: Tectona grandis (SSP1), Tabebuia rosea (SSP2), Pachira quinata (SSP3) and Acacia mangium (SSP4), compared to a grass-only meadow (Megathyrsus maximus cv Mombasa). Results. The highest contents of organic matter, phosphorus, and calcium were registered within the SSP. Soil organic carbon (COS) was higher within the SSPs (39.43±15.34 t C ha-1), compared to the grassland (33.43±17.63 t C ha-1). The SSPs behaved most of the time as methane sinks, immobilizing on average -460±0.42 µg CH4 m-2 h-1. The lowest nitrous oxide emission rates were evident within SSP1 and SSP2 systems (460±0.60; 620±1.19 µg N2O m-2 h-1, respectively). Conclusion. The implementation of SSP contributes to the decrease of soil degradative processes (physical and chemical), to the increase of soil carbon stocks and, consequently, they are a greenhouse gas mitigation strategy in livestock systems.

Downloads

Download data is not yet available.

References

Alonso, J. (2011). Los sistemas silvopastoriles y su contribución al medio ambiente. Revista Cubana de Ciencia Agrícola, 45(2), 107-115.

Arai, S., Ishizuka, S., Ohta, S., Ansori, S., Tokuchi, N., Tanaka, N, & Hardjono, A. (2008). Potential N2O emissions from leguminous tree plantation soils in the humid tropics. Global Biogeochemical Cycles, 22(2), Article GB2028. https://doi.org/10.1029/2007gb002965

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006

Casals, P., Romero, J., Rusch, G. M., & Ibrahim, M. (2013). Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant and Soil, 374(1-2), 643–659. https://doi.org/10.1007/s11104-013-1884-9

Charmley, E., Williams, S. R. O., Moate, P. J., Hegarty, R. S., Herd, R. M., Oddy, V. H., Reyenga, P., Staunton, K. M., Anderson, A., & Hannah, M. C. (2016). A universal equation to predict methane production of forage-fed cattle in Australia. Animal Production Science, 56(3), Article 169. https://doi.org/10.1071/an15365

Chapman, H. D. (2016). Cation-exchange capacity In A. G. Norman (Ed.), Methods of soil analysis: Part 2 Chemical and microbiological properties (Chapter 57, pp. 891-901). American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.c6

Chu, H., Hosen, Y., & Yagi, K. (2007). NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biology and Biochemistry, 39, 330-339. https://doi.org/10.1016/j.soilbio.2006.08.003

Contreras-Santos, J. L., Martínez-Atencia, J., Cadena-Torres, J., & Fallas-Guzmán, C. K. (2019). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. Agronomía Costarricense, 44(1), 29-41. https://doi.org/10.15517/rac.v44i1.39999

Contreras-Santos, J. L., Martínez-Atencia, J., & Falla-Guzman, C. (2021). Carbono acumulado en raíces de especies vegetales en sistemas silvopastoriles en el Norte de Colombia. Revista de Ciencias Ambientales, 55(1), 52-69. https://doi.org/10.15359/rca.55-1.3

De-Carvalho, A. M., de Oliveira, W. R. D., Ramos, M. L. G., Coser, T. R., de Oliveira, A. D., Pulrolnik, K., Souza, K. W., Vileta, L., & Marchão, R. L. (2017). Soil N2O fluxes in integrated production systems, continuous pasture and Cerrado. Nutrient Cycling in Agroecosystems, 108(1), 69–83. https://doi.org/10.1007/s10705-017-9823-4

De-Stefano, A., & Jacobson, M. G. (2017). Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems, 92, 285–299. https://doi.org/10.1007/s10457-017-0147-9

Di-Rienzo, J., F. Casanoves, M. Balzarina, L. Gonzalez, M. Tablada, & C. Robledo. (2018). Infostat versión 2018. Universidad Nacional de Córdoba.

Dijkstra F. A., Morgan J. A., Follett R. F., & Lecain D. R. (2013) Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Global Change Biology, 19(6), 1816-1826. https://doi.org/10.1111/gcb.12182

Dollinger, J., & Jose, S. (2019). Agroforestry for soil health. Agroforestry Systems, 93(3), 1205–1205. https://doi.org/10.1007/s10457-018-0223-9

Espinosa-Carvajal, M., Contreras-Santos, J., Torres, J., Martínez-Atencia, J., Jaramillo-Barrios, C., & Hurtado, M. (2020). Flujos de metano en suelos con coberturas de pastos en el norte de Colombia. Agronomía Mesoamericana, 31(2), 291-309. https://doi.org/10.15517/am.v31i2.38387

Ferreira, O. (2008). Flujos de gases de efecto invernadero, potencial de calentamiento global y evaluación de emergía del sistema agroforestal quesungual en el sur de Lempira, Honduras [Tesis de Maestría, no publicada], Universidad Nacional de Colombia.

Food and Agriculture Organization. (2017). Soil organic carbon: the hidden potential. http://www.fao.org/3/i6937e/i6937e.pdf

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization. Retrieved December 6, 2019, from http://www.fao.org/3/a-i3437e.pdf

Hernández, J. H., & Corona, L. (2018). El metano y la ganadería bovina en México: ¿Parte de la solución y no del problema? Agroproductividad, 11(2),46-51.

Hendershot, W., Lalande, H., & Duquette, M. (2007). Ion exchange and exchangeable cations In M. R. Carter, & E. G. Gregorich, Soil Sampling and Methods of Analysis (2nd Ed. pp. 197-207). Canadian Society of Soil Science.

Holdridge, L. (2000). Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura.

Instituto Geográfico Agustín Codazzi. (2006). Métodos analíticos del laboratorio de suelos (6a Ed.). Imprenta Nacional de Colombia.

Jose, S., & Dollinger, J. (2019). Silvopasture: a sustainable livestock production system. Agroforestry Systems, 93(1), 1–9. https://doi.org/10.1007/s10457-019-00366-8

Kähkönen, M. A., Wittmann, C., Ilvesniemi, H., Westman, C. J., & Salkinoja-Salonen, M. (2002). Mineralization of detritus and oxidation of methane in acid boreal coniferous forest soils: seasonal and vertical distribution and effects of clear-cut. Soil Biology and Biochemistry, 34(8), 1191-1200. https://doi.org/10.1016/s0038-0717(02)00056-1

Lana, Â. M. Q., Lana, R. M. Q., Lemes, E. M., Reis, G. L., & Moreira, G. H. F. A. (2016). Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome. Agroforestry Systems, 92, 415-424. https://doi.org/10.1007/s10457-016-9998-8

Leyva, S., Baldoquin, A., & Reyes, M. (2018). Propiedades de los suelos en diferentes usos agropecuarios, Las Tunas, Cuba. Revista Ciencias Agrícolas, 35(1), 36-47. http://dx.doi.org/10.22267/rcia.183501.81.

López-Santiago, J. G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V. F., Solorio-Sánchez, F. J., Martínez-Zurimendi, P., Aryal, D. R., & Chay-Canul, A. J. (2018). Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Systems, 93(1), 199–211. https://doi.org/10.1007/s10457-018-0259-x

Luo, J., de Klein C. A. M., Ledgard, S. F., & Saggar, S. (2010) Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agriculture, Ecosystems & Environment, 136(3-4), 282–291. https://doi.org/10.1016/j.agee.2009.12.003

Martínez-Atencia, J. (2013). Producción y descomposición de hojarasca en sistemas silvopastoriles de estratos múltiples y su efecto sobre propiedades bioorgánicas del suelo en el valle medio del Río Sinú [Tesis de Doctorado, Universidad Nacional de Colombia], Repositorio de la Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/20938

Martínez-Atencia, J., Loaiza-Usuga, J. C., Osorio-Vega, N. W., Correa-Londoño, G., & Casamitjana-Causa, M. (2020). Leaf litter decomposition in diverse silvopastoral systems in a neotropical environment. Journal of Sustainable Forestry, 39(7), 710-729. https://doi.org/10.1080/10549811.2020.1723112

Merino, A., Pérez-Batallón, P., & Macías, F. (2004). Influencia del uso y manejo agrícola sobre la dinámica de CH4 del suelo en el norte de España. Edafología, 11(2), 207-219.

Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., & Eibl, B. (2015). Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales (Serie Técnica, Informe Técnico 402). Centro Agronómico Tropical de Investigación y Enseñanza. https://espace.library.uq.edu.au/data/UQ_296869f/UQ296869f_OA.pdf?Expires=1616010826&Key-Pair-Id=APKAJKNBJ4MJBJNC6NLQ&Signature=U7U5GYxfoF9CFtx~mXnDr8E6yrphnMQR4blCA47KJG6FmtwDGejrLgzDFIVzhR7uiu75hL4vPSQCM5WWA0uRGRZTzpGv3zzVKvNxhAPgWvXSLB6gcURKC60A4E187dM2TwTNb5zkZxn8axCRPq8FNtF2Hb~99Z1mHB1CTj8LmE3c5rwkM8SHTSr9pwd3t1jLQ~Yt7LmFLGK8sAKEq2Inu4RKUuH0~3FdUUNM-Vo8Heyfr4g-9jcBFlGbpkUlfrkC6WJGAqAff-0qhR7uhVdkpoevMPfC7nfL4H6FtlJhP8VbMyZee2gxVr6KW5~e3VzwL1k4BPw3xW9ArXpRVDmufQ__#page=276

Murgueitio-Restrepo, E., Barahona-Rosales, R., Flores-Estrada, M. X., Chará-Orozco, J. D., & Rivera-Herrera, J. E. (2016). Es posible enfrentar el cambio climático y producir más leche y carne con sistemas silvopastoriles intensivos. Ceiba, 54(1), 23–30. https://doi.org/10.5377/ceiba.v54i1.2774

Nelson, D., & Sommers, L. (1983) Total carbon, organic carbon and organic matter. In A. Page, R. Miller, & D. Kenney (Eds.), Methods of soil analysis. Part 2 Chemical and microbiological properties (2nd Ed. pp. 539-579-430). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Organización de las Naciones Unidas para la Alimentación y la Agricultura, & Grupo Técnico intergubernamental de Suelos. (2015). Estado Mundial del Recurso Suelo (EMRS) - Resumen Técnico. Recuperado el 9 de septiembre de 2018, de http://www.fao.org/3/a-i5126s.pdf

Pachauri, R. K., Meyer, L. A., & Stocker, T. (Eds.) (2014). IPCC 2014: Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de Trabajo I. II y III al Quinto Informe de evaluación del panel intergubernamental sobre el cambio climático. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf

Pastrana, V. I., Reza, G. S., Espinosa, C. M., Suárez, P. E., & Díaz, A. E. (2011). Efecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt. Ciencia y Tecnología Agropecuaria, 12(2), 134. https://doi.org/10.21930/rcta.vol12_num2_art:223

Pérez-Ramírez, S., Ramírez, M. I., Jaramillo-López, P. F., & Bautista, F. (2013). Contenido de carbono orgánico en el suelo bajo diferentes condiciones forestales: reserva de la biosfera mariposa monarca, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(1), 157–173. https://doi.org/10.5154/r.rchscfa.2012.06.042

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2018). Nlme: linear and nonlinear mixed effects models. R package version 3.1-137. R Core Team. Retrieved June 21, 9019, from https://CRAN.R-project.org/package=nlme

Reis, G. L., Lana, Â. M. Q., Maurício, R. M., Lana, R. M. Q., Machado, R. M., Borges, I., & Neto, T. Q. (2009). Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant and Soil, 329(1-2), 185–193. https://doi.org/10.1007/s11104-009-0144-5

Rivera, J. E., Chará, J., & Barahona, R. (2018). CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems. Agroforestry Systems, 93(3), 915–928. https://doi.org/10.1007/s10457-018-0187-9

Rondón M. (2000). Land use and balances of greenhouse gases in Colombian tropical savannas [Doctor Thesis no published]. Cornell University.

Shi, L., Feng, W., Xu, J., & Kuzyakov, Y. (2018). Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation & Development, 29(11), 3886–3897. https://doi.org/10.1002/ldr.3136

Soil Survey Staff. (2014). Keys to soil taxonomy (12th Ed.). USDA-Natural Resources Conservation Service. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf

Vallejo, V. E., Roldán, F., & Dick, R. P. (2012). Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest in Colombia. Biology and Fertility of Soils, 46(6), 577-587. https://doi.org/10.1007/s00374-010-0466-8

Visscher, A., Boeckx, P., & Van-Cleemput, O. (2007). Artificial methane sinks In Reay, D. S., Hewitt, C. N., Smith, K. A., & Grace J. (Eds.), Greenhouse gas sinks (pp. 184-200). CABI Agriculture and Bioscience. https://doi.org/10.1079/9781845931896.0184

Yamashita, N., Ohta, S., & Hardjono, A. (2008). Soil changes induced by Acacia mangium plantation establishment: Comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecology and Management, 254(2), 362–370. https://doi.org/10.1016/j.foreco.2007.08.012

Published

2021-09-01

How to Cite

Contreras-Santos, J. L., Martinez-Atencia, J., Raghavan, B., López-Rebolledo, L., & Garrido-Pineda, J. (2021). Silvopastoral systems: Mitigation of greenhouse gases in the Tropical Dry Forest - Colombia. Agronomía Mesoamericana, 32(3), 901–919. https://doi.org/10.15517/am.v32i3.43313

Most read articles by the same author(s)