Effect of Azofert®-F on the stomatal response of beans to water deficit





Phaseolus vulgaris L., biofertilizer, stomatic index, epidermal cells


Introduction. Water deficit is the abiotic stress with the highest incidence on the growth and yield of bean plants. For this reason, alternatives are being sought to mitigate its adverse effects, such as the use of biofertilizers based on the microbial biodiversity existing in the soil. Objective. The effect of Azofert®-F inoculant on the stomatal index (IE) of bean plants was evaluated under water stress conditions. Materials and methods. The experiment was carried out in the period 2016-2017 in a room with fluorescent lamps of the Department of Plant Physiology and Biochemistry of the National Institute of Agricultural Sciences, San José de las Lajas, Mayabeque, Cuba. For the anatomical study, the leaf epidermis was observed with an optical light microscope (Motic) and photographed with a coupled camera. Stomatal variables were measured using the ImageJ morphometric program and processed with the SPSS Version 22.0 statistical package. A completely randomized design was used. Ten plants were randomly selected for each treatment to evaluate density and stomatal index. Results. Azofert®-F increased the IE of the studied cultivars. The structure of the epidermal cells was altered in both leaf surfaces when the humidity in the soil decreased; the stomatal density was modified with the presence of the product. On the abaxial surface, the occlusive cells were narrower, which showed that the leaves with the highest IE had smaller stomata. The Azofert®-F caused the stomata to remain semi-closed when there was a water deficiency in the plants, because these bacteria helped to alleviate the water deficit by producing hormones and other enzymes that regulate the loss of water through transpiration. Conclusion. The application of Azofert®-F increased the density and stomatal index of bean plants under conditions of water stress.


Download data is not yet available.


Álvarez, I., & Reynaldo, I. (2015). Efecto del Pectimorf® en el índice estomático de plantas de frijol (Phaseolus vulgaris L.). Revista Cultivos Tropicales, 36(3), 82-87.

Baldoquín, M. (2015). Efecto de la sequía sobre el rendimiento y sus componentes de genotipos de frijol común (Phaseolus vulgaris L) en condiciones de campo [Tesis de Maestría, sin publicar]. Universidad de Granma.

Čaňová, I., Ďurkovič, J., Hladká, D., & Lukáčik, I. (2012). Changes in stomatal characteristics and photochemical efficiency during leaf development in six species of Sorbus. Photosynthetica, 50(4), 635-640. https://dx.doi.org/10.1007/s11099-012-0063-1

Clément, M., Leonhardt, N., Droillard, M. J., Reiter, I., Montillet, J. L., Genty, B. Laurière, C., Nussaume, L., & Noël, L. D. (2011). The Cytosolic/Nuclear HSC70 and HSP90 Molecular Chaperones Are Important for Stomatal Closure and Modulate Abscisic Acid-Dependent Physiological Responses in Arabidopsis. Plant Physiology, 156(3),1481-1492. https://dx.doi.org/10.1104/pp.111.174425

Dell› Amico, J., Morales, D., Jerez, E., Rodríguez, P., & Álvarez, I. (2017). Efecto de dos variantes de riego y aplicaciones foliares de Pectimorf® en el desarrollo del frijol (Phaseolus vulgaris L.). Revista Cultivos Tropicales, 38(3), 129-134.

Dubberstein, D., Rodrigues, W., Semedo, Rodrigues, J., Pais, I., Leitão, A., Partelli, Campostrini, E., Reboredo, F., Scotti, P., Lidon, F., Ribeiro, A., DaMatta, F., & Ramalho, J. (2018). Mitigation of the negative impact of warming on the coffee crop: The role of increased air [CO2] and management strategies. In A. Shanker, C. Shanker, & C. Srinivasarao (Eds.), Climate resilient agriculture - Strategies and perspectives (p. 57-85). IntechOpen https://dx.doi.org/10.5772/intechopen.72374

Estrada, W., Jerez, E., Nápoles, M. C., Sosa, A., Maceo, Y., & Cordoví, C. (2016). Respuesta de cultivares de frijol (Phaseolus vulgaris L.) a la sequía utilizando diferentes índices de selección. Revista Cultivos Tropicales, 37(3), 79-84.

Faure, B., Benitez, R., Rodriguez, E., Grande, O., Torres, M., & Pérez, P. (2014). Guía Técnica para la producción de frijol común y maíz. Ministerio de la Agricultura.

Florido, M., & Bao, L. (2014). Tolerancia al estrés por déficit hídrico en tomate (Solanum licopersicum L.). Cultivos Tropicales, 35(3), 70-88.

Gan, Y., Zhou, L., Shen, Z. J., Shen, Z. X., Zhang, Y. Q., & Wang, G. X. (2010). Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies, 51(3), 325–336.

Han, R., Gao, G., Li, Z., Dong, Z., & Guo, Z. (2017). Effects of exogenous 5-aminolevulinic acid on seed germination of alfalfa (Medicago varia Martyn.) under drought stress. Japanese Society of Grassland Science, 64(2),1-8. https://dx.doi.org/10.1111/grs.12189

Hernández, A., Pérez, J., Bosch, D., & Castro, N. (2015). Clasificación de los suelos en Cuba 2015. Ediciones INCA.

Khan, N., Bano, A., Shahid M. A., Nasim W., & Babar, M. D. A. (2019). Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia. Review. Plant Science and Biodiversity Centre, 73, 1083-1098. Springer. https://dx.doi.org/10.2478/s11756-018-0127-1

Lake, J. A., & Woodward, F. I. (2008). Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytologist, 179(2), 397-404. https://dx.doi.org/10.1111/j.1469-8137.2008.02485.x

Nápoles, M. C. (2003). Inducción de la nodulación en soya (Glycine max L Merrill) por Bradyrhizobium sp. Influencia del medio de cultivo [Tesis de Post Doctoral, sin publicar]. Universidad de La Habana.

Nápoles, M. C., Cabrera, J. C., Onderwater, R., Wattiez, R., Hernández, I., Martínez, L., & Núñez, M. (2016). Señales producidas por Rhizobium leguminosarum en la interacción con frijol común (Phaseolus vulgaris L.). Cultivos Tropicales, 37(2), 37-44. http://dx.doi.org/10.13140/RG.2.1.4466.8405

Nemeskéri, E., Molnár, K., Pék, Z., & Helyes, L. (2018). Effect of water supply on the water use-related physiological traits and yield of snap beans in dry seasons. Irrigation Science, 36, 143-158. https://dx.doi.org/org/10.1007/s00271-018-0571-2

O’Carrigan, A., Hinde, E., Lu, N., Xu, X. Q., Duan, H., Huang, G., Mak, M., Bellotti, B., & Chen, Z. H. (2014). Effects of light irradiance on stomatal regulation and growth of tomato. Environmental and Experimental Botany, 98, 65-73. https://dx.doi.org/10.1016/j.envexpbot.2013.10.007

Ogaya, R., Llorens, L., & Peñuelas, J. (2011). Density and length of stomatal and epidermal cells in «living fossil» trees grown under elevated CO2 and a polar light regime. Acta Oecologica, 37(4), 381-385. https://dx.doi.org/10.1016/j.actao.2011.04.010

Polania, J., Poschenrieder, C., Rao, I. & Beebe, S. (2016). Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15N natural abundance in grain. European Journal of Agronomy, 79, 66-73. https://doi.org/10.1016/j.eja.2016.05.014

Pungulani, L. L. M., Millner, J. P., Williams, W. M., & Banda, M. (2013). Improvent of leaf wilting scoring in cowpea (Vigna sinensis (L.) Walp.): From qualitative scale to quantitative index. Australian Journal of Crops Science, 7(9), 1262-1269.

Quintana, A., Iracheta, L., Méndez, I., & Alonso, M. (2017). Caracterización de genotipos élite de Coffea canephora por su tolerancia a la sequía. Agronomía Mesoamericana, 28(1), 183-198. https://dx.doi.org/10.15517/am.v28i1.23874

Rodés, G. R., & Collazo, O. M. (2006). Manual de prácticas de fotosíntesis. Universidad Nacional Autónoma de México.

Sánchez, D., Cervera, M. T., Escolano-Miguel, A., Velez, M. D., de María, N., Díaz, L., Sánchez, R., Aranda, I., & Guevara, M. A. (2018). Drought escape can provide high grain yields under early drought in lentils. Brazilian Society of Plant Physiology, 31, 273-286. https://doi.org/10.1007/s40626-018-0136-z

Taiz, L., & Zeiger, E. (2006). Plant physiology (4th Ed.). Palgrave Macmillan.

Torabian, S., Reza, M. S., Mohammadi, A. D., & Toorchi, M. (2018). Exogenous spermidine affected leaf characteristics and growth of common bean under water deficit conditions. Communications in Soil Science and Plant Analysis, 49(11), 1289-1301. https://doi.org/10.1080/00103624.2018.1457157

Yang, X., Yang, Y., Ji, C., Feng, T., Shi, Y., Lin, L., Ma, J., & He, J. S. (2014). Large-scale patterns of stomatal traits in

Tibetan and Mongolian grassland species. Basic and Applied Ecology, 15(2), 122-132. https://dx.doi.org/10.1016/j.baae.2014.01.003

Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., & Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26–34. https://doi.org/10.1016/j.jplph.2017.07.009

Zhao, X., Dai, X., Wang, G., Shen, Z., Zhang, H., & Qiu, M. (2006). Developmental mechanism and distribution pattern of stomatal clusters in Cinnamomum camphora. Russian Journal of Plant Physiology, 53(3), 310-315. https://dx.doi.org/10.1134/S1021443706030046

Zhou, Y., Jiang, X., Schaub, M., Wang, X., Han, J., Han, S., & Li, M. H. (2013). Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P. sylvestriformis needles. European Journal of Forest Research, 132(5-6), 899-908. https://dx.doi.org/10.1007/s10342-013-0728-8.



How to Cite

Estrada Prado, W. .-., Chávez Suáres, L., Maceo Ramos, Y. C., Jerez Mompie, E., & Nápoles García, M. C. (2021). Effect of Azofert®-F on the stomatal response of beans to water deficit. Agronomía Mesoamericana, 32(2), 442–451. https://doi.org/10.15517/am.v32i2.42001

Most read articles by the same author(s)