Genotype by environment interaction of nine cotton varieties for inter Andean Valleys in Colombia

Evaluation of cotton genotypes in different environments




Gossypium hirsutum, adaptation, stability


Introduction. The use of stability estimators for agronomic characteristics of interest allows understanding the behavior of the genotype in relation to those environmental factors that influence its expression. Objective. The objective of this study was to determine genotype by environment (GE) interaction to select cotton varieties with a high seed yield potential and fiber percentage. Materials and methods. Nine varieties of transgenic cotton were evaluated in ten localities distributed in two geographically different ecoregions: geographical valleys of the Magdalena and Cauca rivers, by means of random complete block design, between the months of March and August in 2013. Results. Cotton seed yield had significant GE interaction, where the three principal components (PC) of the Additive Main Effects and Multiplicative Interaction (AMMI) model were significant (p<0.01), with contributions of 86.9, 6.4, and 3.3 %, respectively. The average yield for the two ecoregions were 3.3 t ha-1 (Magdalena river geographical valley) 4.5 t ha-1 (Cauca river geographical valley), and for all the evaluated localities in the ecoregions was 3.9 t ha-1. Fiber percentage did not present significative GE interaction and had an average value of 43,34%. The V004 variety showed the best performance with an average yield of 4.9 t ha-1. The varieties with greater adaptability were V001 and V002. A high correlation was observed between the most productive varieties and the most productive environments. Conclusion. The differential behavior between varieties and localities for yield allowed to select varieties for specific environments, or with phenotypic plasticity for several environments.


Download data is not yet available.


Ali, Y., Z. Aslam, and F. Hussain. 2005. Genotype and environment interaction effect on yield of cotton under naturally salt stress condition. Int. J. Environ. Sci. Technol. 2:169-173. doi:10.1007/BF03325872

Bednarz, C.W., D.C. Bridges, and S.M. Brown. 2000 Analysis of cotton yield stability across population densities. Agron. J. 92:128-135. doi:10.2134/agronj2000.921128x

Bernardo, R. 2016. Bandwagons I, too, have known. Theor. Appl. Genet. 129:2323-2332. doi:10.1007/s00122-016-2772-5

Castro, F., D. Contreras, L. Tamayo, y L. Trujillo. 2013. Análisis de la competitividad de la cadena algodón, fibras, textiles y confecciones. FEDESARROLLO, Bogota, COL. (consultado set. 2018).

CONALGODÓN (Confederación Colombiana del Algodón). 2019. Estadísticas. CONALGODON, COL. (consultado set. 2018).

Crossa, J. 2012. From genotype × environment interaction to gene × environment interaction. Curr. Genomics 13:225-244. doi:10.2174/138920212800543066

De-Mendiburu, F. 2019. Package ‘agricolae’. R Project. (accessed Apr. 2019).

Des-Marais, D.L., K.M. Hernandez, and T.E. Juenger. 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu. Rev. Ecol. Evol. Syst. 44:5-29. doi:10.1146/annurev-ecolsys-110512-135806

González, A., D. Pérez, J. Sahagún, O. Franco, E.J. Morales, M. Rubi, F. Gutiérrez, y A. Balbuena. 2010. Aplicación y comparación de metodos univariados para evaluar la estabilidad en amices del Valle Toluca Atlacomulco, México. Agron. Costarricense 34(2):129-143.

González, T., E. Monteverde, C. Marín, y P.M. Madriz. 2007. Comparación de tres métodos para estimar estabilidad del rendimiento en nueve variedades de algodón. Interciencia 32(5):344-348.

Greveniotis, V., and E. Sioki. 2017. Genotype by environment interactions on cotton fiber traits and their implications on variety recommendation. J. Agric. Stud. 5(2):86-106. doi:10.5296/jas.v5i2.10762

Liu, S.M., G.A. Constable, P.E. Reid, W.N. Stiller, and B.R. Cullis. 2013. The interaction between breeding and crop management in improved cotton yield. F. Crop Res. 148:49-60. doi:10.1016/j.fcr.2013.04.006

Lozano-Ramírez, Á., A. Santacruz-Varela, F. San-Vicente-García, J. Crossa, J. Burgueño, y J.D. Molina-Galán. 2015. Modelación de la interacción genotipo x ambiente en rendimiento de híbridos de maíz blanco en ambientes múltiples. Rev. Fitotec. Mex. 38:337-347.

Martínez-Reina, A.M., y M.J. Hernández. 2015. La competitividad del algodón colombiano frente a los principales países productores mediante el enfoque de costos de producción. Corpoica Cienc. Tecnol. Agropecu. 16:189-215.

Mehboob-ur-Rahman, T. Shaheen, N. Tabbasam, M. Atif-Iqbal, M. Ashraf, Y. Zafar, and A.H. Paterson. 2012. Cotton genetic resources. A review. Agron. Sustain. Dev. 32:419-432. doi:10.1007/s13593-011-0051-z

Mudada, N., J. Chitamba, T.O. Macheke, and P. Manjeru. 2017. Genotype × environmental interaction on seed cotton yield and yield components. OALib 4(11):1-22. doi:10.4236/oalib.1103192

OECD (Organisation for Economic Co-operation and Development), and FAO. 2018. Cotton. In: OECD, and FAO, editors, OECD-FAO agricultural outlook 2018-2027. Chapter 10. OECD Publishing, Paris, FRA. p. 207-215.

Oliveira, E.J. de, J.P.X. de Freitas, and ON de Jesus. 2014. AMMI analysis of the adaptability and yield stability of yellow passion fruit varieties. Sci. Agric. 71(2):139-145. doi:10.1590/S0103-90162014000200008

Orawu, M., G. Amoding, L. Serunjogi, G. Ogwang, and C. Ogwang. 2017. Yield stability of cotton genotypes at three diverse agro-ecologies of Uganda. J. Plant Breed Genet. 5(3):101-114.

Palomo-Gil, A., A. Gaytán-Mascorro, R. Faz-Contreras, D.G. Reta-Sánchez, and E. Gutiérrez-Del Río. 2004. Cotton yield and fiber quality in response to nitrogen rate and number of irrigations. Terra Latinoam. 22:299-305.

R Core Team. 2015. R: A language and environment for statistical computing. R Project. (accessed Apr. 2019).

Rodríguez-Pérez, J.E., J. Sahagún-Castellanos, H. Villaseñor-Mir; J.D. Molina-Galán, A. Martínez-Garza. 2005. La interacción genotipo x ambiente en la caracterización de áreas temporales de producción de trigo. Agrociencia 39(1):51-64.

Sareen, S., B. Singh Tyagi, A. Kumar Sarial, V. Tiwari, and I. Sharma. 2014. Trait analysis, diversity, and genotype × environment interaction in some wheat landraces evaluated under drought and heat stress conditions. Chil. J. Agric. Res. 74(2):135-142. doi:10.4067/S0718-58392014000200002

Vargas, A.E., D. Baena, and J.E. Vargas. 2016. Analysis of stability and adaptability of QPM hybrids of maize growing in different Colombian agroecological zones. Acta Agron. 65:72-79. doi:10.15446/acag.v65n1.43417

Wendel, J.F., C.L. Brubaker, and T. Seelanan. 2010. The origin and evolution of gossypium. In: J.M. Stewart et al., editors, Physiology of cotton. Springer, Dordrecht, NLD. p. 1-18. doi:10.1007/978-90-481-3195-2_1

Williams, H., V. Pecina, F. Zavala, N. Montes, A.J. Gámez, G. Arcos, M.A. García, S. Montes, and L. Alcalá. 2010. Finlay and Wilkinson model vs. AMMI model in the analysis of genotype-environment interaction in sorghum. Rev. Fitotec. Mex. 33:117-123.



How to Cite

Mejia-Salazar, J. R., Galeano-Mendoza, C. H., Burbano-Erazo, E., Vallejo-Cabrera, F. A., & Arango, M. (2020). Genotype by environment interaction of nine cotton varieties for inter Andean Valleys in Colombia: Evaluation of cotton genotypes in different environments. Agronomía Mesoamericana, 31(1), 31–42.

Most read articles by the same author(s)