Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Efecto del estrés sobre la anatomía foliar de cultivares de caña de azúcar con diferente tolerancia a la sequía (Saccharum officinarum, Poaceae)
PDF (English)
HTML (English)

Palabras clave

adaptation
drought stress
leaf anatomy
sugarcane
phenotypic correlation
adaptación
estrés por sequía
anatomía de la hoja
caña de azúcar
correlación fenotípica

Cómo citar

Taratima, W., Ritmaha, T., Jongrungklang, N., Maneerattanarungroj, P., & Kunpratum, N. (2020). Efecto del estrés sobre la anatomía foliar de cultivares de caña de azúcar con diferente tolerancia a la sequía (Saccharum officinarum, Poaceae). Revista De Biología Tropical, 68(4), 1159–1170. https://doi.org/10.15517/rbt.v68i4.41031

Resumen

Efecto del estrés sobre la anatomía foliar de cultivares de caña de azúcar con diferente tolerancia a la sequía (Saccharum officinarum, Poaceae). Introducción: La sequía es un factor de estrés importante para la producción de caña de azúcar en muchas áreas del mundo. La proporción de agua y los índices de humedad son información aplicable en la planificación agronómica para pronosticar el exceso o el déficit de agua durante el ciclo del cultivo. Objetivo: Se compararon las características anatómicas de las hojas de dos cañas de azúcar diferentes Saccharum 'UT12' (cultivar susceptible a la sequía) y Saccharum 'UT13' (cultivar tolerante a la sequía) bajo una situación de estrés por sequía temprana entre 30 y 90 días después de la siembra. Métodos: Se investigaron las características anatómicas de cuarenta hojas utilizando la técnica de seccionamiento de pelado y manos libres. Resultados: Algunas características anatómicas mostraron respuesta a estrés por sequía. Saccharum "UT12" demostró una mayor sensibilidad hacia las características anatómicas que Saccharum 'UT13'. Un total de 23 y 15 de las 40 características anatómicas mostraron significancia en Saccharum 'UT12' y Saccharum 'UT13', respectivamente. Algunas características anatómicas como la pared celular y el grosor de la cutícula, el tamaño del haz vascular, el tamaño y la densidad de los estomas se pueden utilizar como marcadores importantes para evaluar el estrés por sequía en la hoja de caña de azúcar. Conclusiones: Este es el primer reporte que describe la anatomía comparada de la hoja de la caña de azúcar Saccharum 'UT12' y Saccharum 'UT13' en Tailandia bajo estrés por sequía. Los resultados proporcionarán información importante para mejorar los mecanismos de adaptación de cultivares tolerantes de caña de azúcar bajo situaciones iniciales de estrés por sequía.

https://doi.org/10.15517/rbt.v68i4.41031
PDF (English)
HTML (English)

Citas

Abbas, R.S., Ahmad, D.S., Sabir, M.S., & Shah, H.A. (2014). Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. Journal of Soil Science and Plant Nutrition,14, 233-243.

Bajji, M., Lutts, S., & Kinet, J.M. (2000). Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. Journal of Plant Physiology, 156, 75-83.

Boaretto, L.F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G.A., Mazzafera, P., & Azevedo, R.A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugar cane genotypes. Plant Physiology and Biochemistry, 74, 165-175.

Bosabalidis, A.M., & Kofidis, A. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163, 375-379.

Graca, J.P.D., Rodrigues, F.A., Farias, J.R.B., Oliveira, M.C.N.D., Hoffmann-Campo, C.B., & Zingaretti, S.M. (2010). Physiological parameters in sugar cane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology, 22, 189-197.

Hasegawa, P., Bressan, R.A., Zhu, J.K., & Bohnert, H.J. (2000). Plant cellular and molecular to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463-499.

Jangpromma, N., Kitthaisong, S., Lomthaisong, K., Daduang, S., Jaisil, P., & Thammasirirak, S. (2010). A Proteomics Analysis of Drought Stress-Responsive Proteins as Biomarker for Drought-Tolerant Sugar cane Cultivars. American Journal of Biochemistry and Biotechnology, 6, 89-102.

Joarder, N., Roy, K.A., Sima, N.S., & Parvin, K. (2010). Leaf blade and midrib anatomy of two sugarcane cultivars of Bangladesh. Journal of Biosciences, 18, 66-73.

Khonghintaisong, J. (2018). Physiological characteristics involved with tiller development to millable cane and responses of rooting and physiological traits to early season drought conditions in sugarcane (Master’s Thesis). Khon Kaen University, Khon Kaen, Thailand.

Khonghintaisong, J., Songsri, P., & Jongrungklang, N. (2020). Root characteristics of individual tillers and the relationships with above-ground growth and dry matter accumulation in sugarcane. Pakistan Journal of Botany, 52, 101-109.

Kulya, C., Theerakulpisut, P., Sriyot, N., Pattanagul, W., Lontom, W., Sanitchon, J., Pengrat, J., Siangliw, L.J., & Toojinda, T. (2014). Comparative leaf anatomy of drought-tolerant and drought-sensitive rice cultivars. Thai Journal of Botany, 6, 95-105.

Laclau, P.B., & Laclau, J.P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114, 351-360.

Lu, C., & Zhang, J. (1999). Effects of water stress on photosystem II photochemistry and its thermos stability in wheat plants. Journal of Experimental Botany, 50, 1199-1206.

Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. Journal of Plant Physiology, 149, 186-195.

Metcalfe, C.R. (1960). Anatomy of the monocotyledons (Vol 1). Oxford, UK: Clarendon Pr.

Nautiyal, P.C., Nageswara Rao, R.C., & Joshi, Y.C. (2002). Moisture-deficit induced changes in leaf water content, leaf carbon exchange rate and biomass production in groundnut differing in specific leaf area. Field Crops Research, 74, 67-79.

Nawazish, S., Hameed, M., & Naurin, S. (2006). Leaf anatomical adaptations of Cenchrus ciliaris L., from the Salt Range, Pakistan against drought stress. Pakistan Journal of Botany, 38, 1723-1730.

Ngernmuen, A. (2013). Effect of salinity on anatomical characteristics of some salt-tolerant plants in abandoned shrimp ponds (MSc Thesis). Prince of Songkla University, Songkla, Thailand.

Office of the Cane and Sugar Board. (2015). Sugarcane cultivars in Thailand. Khon Kaen, Thailand: Khon Kaen Print.

Palachai, C., Songsri, P., & Jongrungklang, N. (2019). Comparison of yield components of Thailand. SABRAO Journal of Breeding and Genetics, 51, 80-92.

Robertson, M.J., Muchow, R.C., Donaldson, R.A., Inman-Bamber, N.G., & Wood, A.W. (1999). Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Australian Journal of Agricultural Research, 50, 65-77.

Santillán-Fernández, A., Santoyo-Cortés, H.V., García-Chávez, R.L., Covarrubias-Gutiérrez, I., & Merino, A. (2016). Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems, 143, 126-135.

Shao, H.B., Chu, L.Y., Jaleel, C.A., & Zhao, C.Z. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331, 215-225.

Searle, S.R. (1961). Phenotypic, genetic and environmental correlations. Biometrics, 17, 474-480.

Singh, K.S., Singh, P.V., Choudhury, D., Dobhal, P., Kumar, S., & Srivastava, S. (2018). Estimation of genotypic and phenotypic correlations coefficients for yield related traits of under sodic soil. Asian Journal of Crop Science, 10, 100-106. DOI: 10.3923/ajcs.2018.100.106

Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd Ed.). Sunderland, Massachusetts, USA: Sinauer Associates.

Taratima, W., Ritmaha, T., Jongrungklang, N., Raso, S., & Maneerattanarungroj, P. (2019). Anatomical Responses to Drought Stress Condition in Hybrid Sugarcane Leaf (Saccharum officinarum ‘KK3’). Malaysian Applied Biology, 48, 180-188.

Udomprasert, N. (2015). Plant Stress Physiology. Bangkok, Thailand: Chulalongkorn University Press.

Van-Ittersum, M.K., & Rabbinge, R. (1997). Concepts in production ecology for analysis and quantification of agricultural input–output combinations. Field Crop Research, 52, 197-208.

Vargas, L., Santa Brígida, A.B., Mota Filho, J.P., de Carvalho, T.G., Rojas, C.A., Vaneechouttle, D., Van Bel, M., Farrinelli, L., Ferreira, P.C., Vandepoele, K., & Hemerly, A.S. (2014). Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways. PLoS ONE, 9(12), e114744.

Wiedenfeld, R.P. (2000). Water stress during different sugar cane growth periods on yield and response to N fertilization. Agricultural Water Management, 43, 173-182.

Wu, L.L., Liu, Z.L., Wang, J.M., Zhou, C.Y., & Chen, K.M. (2011). Morphological, anatomical, and physiological characteristics involved in development of the large culm trait in rice. Australian Journal of Agricultural Research, 5, 1356-1363.

Zhang, F., Zhang. K., Du, C., Li, J., Xing, Y.X., Yang, L., & Li, Y.L. (2015). Effect of Drought Stress on Anatomical Structure and Chloroplast Ultrastructure in Leaves of Sugar cane. Sugar Tech, 17, 41-48.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2020 Worasitikulya Taratima

Descargas

Los datos de descargas todavía no están disponibles.