Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Examining functional diversity in two plant communities under ecological restoration in Farallones de Cali, Colombia
PDF
HTML
EPUB

Supplementary Files

PDF-suppl1
DOC-suppl1

Keywords

ecological succession
functional ecology
functional traits
plant communities
tropical dry forest
sucesión ecológica
ecología funcional
rasgos funcionales
comunidades vegetales
bosque seco tropical

How to Cite

Cardona Vaca, C. R., & Torres González, A. M. (2025). Examining functional diversity in two plant communities under ecological restoration in Farallones de Cali, Colombia. Revista De Biología Tropical, 73(1), e59149. https://doi.org/10.15517/rev.biol.trop.v73i1.59149

Abstract

Introduction: Functional diversity is crucial in understanding species performance and monitoring ecological restoration processes. In Valle del Cauca, Colombia, where only a small percentage of tropical dry forest remains, ongoing ecological restoration efforts are vital. However, monitoring of restoration efforts is typically not conducted. Objective: To compare the functional diversity of two plant communities, restored two and eight years ago, in the Loma Larga reserve, Colombia. Methods: We assessed nine functional traits in the five most significant species of each community. The analysis included contrast tests for functional trait differences, as well as functional diversity indices. Results: The 8-year community displayed greater values for maximum height, diameter at breast height, and specific leaf area. Conversely, the 2-year community exhibited higher leaf thickness. Moreover, the 8-year community presented the highest values in the functional indices: richness, evenness, divergence, dispersion, and specialization. Conclusions: Ecological restoration had a positive impact on plant communities, as evidenced by increased functional diversity and structural complexity in the 8-year community compared to the 2-year community. This suggests that ecological succession processes advance significantly over time, leading to more resilient and functionally diverse communities. The analysis of functional traits stands out as an effective tool for monitoring the success of restoration and guiding future efforts in critically threatened ecosystems such as tropical dry forests.

https://doi.org/10.15517/rev.biol.trop..v73i1.59149
PDF
HTML
EPUB

References

Bernal, R., Gradstein, S. R., & Celis, M. (Eds.). (2016). Catálogo de plantas y líquenes de Colombia: Capítulos introductorios—Líquenes a Lythraceae (Vol. 1, 1a ed.). Editorial Universidad Nacional de Colombia.

Botina, J. R., & García, L. (2005). Árboles y arbustos del Ecoparque Río Pance. Editorial Sepia Ltda.

Carlucci, M. B., Brancalion, P. H. S., Rodrigues, R. R., Loyola, R., & Cianciaruso, M. V. (2020). Functional traits and ecosystem services in ecological restoration. Restoration Ecology, 28(6), 1372–1383. https://doi.org/10.1111/rec.13279

Cooke, R. S. C., Bates, A. E., & Eigenbrod, F. (2019). Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Global Ecology and Biogeography, 28(4), 484–495. https://doi.org/10/gr4s9z

Córdova-Tapia, F., & Zambrano, L. (2015). La diversidad funcional en la ecología de comunidades. Ecosistemas, 24(3), 78–87. https://doi.org/10/gkms3h

Corredor-Londoño, G. A., Beltrán, J. W., Torres-González, A. M., & Sardi-Saavedra, A. (2020). Phenological synchrony and seasonality of eight tree species in a fragmented landscape in the Colombian Andes. Revista de Biología Tropical, 68(3), 987–1000. https://doi.org/10/gr4s99

da Silva, J. de J., da Silva-Braulio, C., Melo-Moreira, F., Sandos de Jesus-Cavalcante, A., Anda-Rocabado, J. M., & Simao-Nobrega, R. (2020). Crescimento inicial de Clitoria fairchildiana em substratos orgânicos. Revista Brasileira de Agropecuária Sustentável, 10(1), 58–66. https://doi.org/10/gr4s9p

Dexter, K. G., Pennington, R. T., Oliveira-Filho, A. T., Bueno, M. L., Silva de Miranda, P. L., & Neves, D. M. (2018). Inserting tropical dry forests into the discussion on biome transitions in the tropics. Frontiers in Ecology and Evolution, 6, 104. https://doi.org/10.3389/fevo.2018.00104

Fonseca, C. R., & Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology, 89(1), 118–125. https://doi.org/10/ds9zbx

García, H., & González-M., R. (Eds.). (2019). Bosque seco Colombia: Biodiversidad y gestión (1a ed.). Instituto Humboldt Colombia.

Hammer, Ø., Harper, D. A. T., & Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

Imaña-Encinas, J., Riesco-Munoz, G., Antunes-Santana, O., & de Camino, R. (2021). Análisis silvicultural del bosque tropical atlántico a partir de la distribución diamétrica y riqueza florística del arbolado. Revista Forestal Mesoamericana Kurú, 18(42), 46–54. https://doi.org/10.18845/rfmk.v16i42.5538

Joshi, H. C., Pant, P., & Chauhan, H. K. (2024). Challenges and opportunities in scaling up plant functional trait-based approaches. In N. Kumar, & H. Singh (Eds.), Plant functional traits for improving productivity (pp. 301–327). Springer Nature. https://doi.org/10.1007/978-981-97-1510-7_16

Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299–305. https://doi.org/10/d6rqtj

Leverett, B., & Bertolette, D. (2013). American forests tree: Measuring guidelines. American Forests.

Li, J., Chen, X., Niklas, K. J., Sun, J., Wang, Z., Zhong, Q., Hu, D., & Cheng, D. (2022). A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 110(1), 248–261. https://doi.org/10/grc9jk

Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E., Mouillot, D., & Villéger, S. (2022). mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography, 2022(1), e05904. https://doi.org/10/gqpf73

Mason, N. W. H., & de Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10/f46c77

Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111(1), 112–118. https://doi.org/10/cmwgjt

Matsuo, T., Martínez-Ramos, M., Bongers, F., van der Sande, M. T., & Poorter, L. (2021). Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 109(8), 2871–2884. https://doi.org/10/gss33b

Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R., & Seifert, T. (2016). Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecology and Evolution, 6(20), 7546–7557. https://doi.org/10.1002/ece3.2525

Núñez-Florez, R., Pérez-Gómez, U., & Fernández-Méndez, F. (2019). Functional diversity criteria for selecting urban trees. Urban Forestry & Urban Greening, 38, 251–266. https://doi.org/10/gfvxn4

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C., … Cornelissen, J. H. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10/gfgn82

Qin, H., Wang, Y., Zhang, F., Chen, J., Zhang, G., & Dong, G. (2016). Application of species, phylogenetic and functional diversity to the evaluation on the effects of ecological restoration on biodiversity. Ecological Informatics, 32, 53–62.

R Core Team. (2024). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Ramírez-Padilla, B., & Goyes-Acosta, R. I. (2004). Botánica. Generalidades, Morfología y Anatomía de plantas superiores (1a ed.). Editorial Universidad del Cauca.

Rangel, O., & Velázquez, A. (1997). Métodos de Estudio de la Vegetación. In O. Rangel (Ed.), Tipos de Vegetación en Colombia (pp. 59–87). Universidad Nacional de Colombia y Ministerio del Medio Ambiente.

Rosell, J. A., Olson, M. E., Martínez-Garza, C., & Martínez-Méndez, N. (2022). Functional diversity in woody organs of tropical dry forests and implications for restoration. Sustainability, 14(14), 8362. https://doi.org/10/grz6rp

Ruíz, J., Vargas, O., & Rodríguez, N. (2023). Restoration priorities: Integrating successional states and landscape resilience in tropical dry forest compensation projects in Colombia. Applied Geography, 157, 103021. https://doi.org/10/gsfztf

Salgado-Negret, B. (Ed.). (2016). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: Protocolos y aplicaciones (1ª ed.). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Salgado-Negret, B., Pulido Rodríguez, E. N., Cabrera, M., Ruíz Osorio, C., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: Protocolos y aplicaciones (1a ed., pp. 36–80). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Sandoval-Granillo, V., & Meave, J. A. (2023). Leaf functional diversity and environmental filtering in a tropical dry forest: Comparison between two geological substrates. Ecology and Evolution, 13(9), e10491. https://doi.org/10.1002/ece3.10491

Sardi, A., Torres, A. M., & Corredor, G. (2018). Floristic diversity in a rural landscape of the lower slope in Farallones of Cali, Colombia. Colombia Forestal, 21(2), 142–160. https://doi.org/10/gr4s9v

Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. (2010). A user’s guide to functional diversity indices. Ecological Monographs, 80(3), 469–484. https://doi.org/10/btbrks

Schneider, C. A., Rasband, W., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Siyum, Z. G. (2020). Tropical dry forest dynamics in the context of climate change: Syntheses of drivers, gaps, and management perspectives. Ecological Processes, 9(1), 25. https://doi.org/10.1186/s13717-020-00229-6

Tedesco, A. M., López-Cubillos, S., Chazdon, R., Rhodes, J. R., Archibald, C. L., Pérez-Hämmerle, K.V., Brancalion, P. H. S., Wilson, K. A., Oliveira, M., Correa, D. F., Ota, L., Morrison, T. H., Possingham, H. P., Mills, M., Santos, F. C., & Dean, A. J. (2023). Beyond ecology: Ecosystem restoration as a process for social-ecological transformation. Trends in Ecology & Evolution, 38(7), 643–653. https://doi.org/10/gsfztj

Villéger, S., Ramos-Miranda, J., Flores-Hernández, D., & Mouillot, D. (2010). Contrasting changes in taxonomie vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20(6), 1512–1522. https://doi.org/10/fbtqmr

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista de Biología Tropical

Downloads

Download data is not yet available.