Climate seasonality and plant vigor effects on reproductive phenology of Potalia turbinata (Gentianaceae) in Costa Rica
PDF
HTML
EPUB

Supplementary Files

PDF-MS1
DOC-MS1

Keywords

flower and fruit production; Gentianaceae; treelet phenology; tropical forest; fruit morphology, Tirimbina Biological Reserve. producción de flores y frutos; Gentianaceae; fenología de arbustos; bosque tropical; morfología de frutos, Reserva Biológica Tirimbina.

How to Cite

Salazar, R., González-Linares, J., Fernández Otárola, M., Barrantes, G., & Rodríguez-Herrera, B. (2025). Climate seasonality and plant vigor effects on reproductive phenology of Potalia turbinata (Gentianaceae) in Costa Rica. Revista De Biología Tropical, 73(S2), e64854. https://doi.org/10.15517/rev.biol.trop.v73iS2.64854

Abstract

Introduction: Potalia turbinata (Gentianaceae) is a treelet distributed from Nicaragua to Panama. Information on its reproductive biology and phenology is lacking.

Objective: To describe the reproductive phenology of P. turbinata, morphologically characterize its fruits and seeds, and determine whether flower and fruit production correlates with climate (temperature and precipitation) and plant vigor.

Methods: The research took place at Tirimbina Biological Reserve in Costa Rica, January 2017–March 2019. Monthly counts of flowers and fruits were conducted on 86 plants. We used circular statistics to determine the duration and peak of flowering and fruiting. Fruit production was compared between years to describe reproductive cycles. We correlated flower and fruit abundance with climatic conditions. Plant measurements included height, basal stem diameter, leaf crop, seeds per fruit, fruit and seed dimensions, and fruit hardness. We used height, diameter, and number of leaves as proxies for plant vigor and compared plant vigor between fruiting (i.e., number of fruits) and non-fruiting plants.

Results: Flowering lasted 2–6 months per plant, peaking in April, while fruiting was prolonged (3–10 months), moderately peaking in August. Flower abundance was negatively correlated with precipitation, but fruiting showed no significant correlation with climate. Fruit production negatively correlated with plant height and positively correlated with basal stem diameter. Non-fruiting plants had more leaves than fruiting plants.

Conclusions: At the population level, P. turbinata flowered and fruited annually. Individuals were supra-annual, an uncommon reproductive pattern for tropical species. The correlation between flowering and lower precipitation supports possible insect pollination, though direct pollinator observations remain needed. The results concur with other studies indicating a correlation between fruit number and plant size. This investigation provides information on the reproductive phenology and fruit traits of P. turbinata, laying a foundation for future research into its interactions with pollinators and dispersers.

https://doi.org/10.15517/rev.biol.trop..v73iS2.64854
PDF
HTML
EPUB

References

Bawa, K., Kang, H., & Grayum, M. (2003). Relationships among time, frequency, and duration of flowering in tropical rain forest trees. American Journal of Botany, 90(6), 877–887. https://doi.org/10.3732/ajb.90.6.877

Berens, P. (2009). CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31(10), 1–21. https://doi.org/10.18637/jss.v031.i10

Borchert, R. (1983). Phenology and control of flowering in tropical trees. Biotropica, 15(2), 81–89. https://doi.org/10.2307/2387949

Boyle, W. A., & Bronstein, J. L. (2012). Phenology of tropical understory trees: patterns and correlates. Revista de Biología Tropical, 60(4), 1415–1430. https://doi.org/10.15517/rbt.v60i4.2050

Brearley, F. Q., Proctor, J., Nagy, L., Dalrymple, G., & Voysey, B. C. (2007). Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. Journal of Ecology, 95, 828–839. https://doi.org/10.1111/j.1365-2745.2007.01258.x

Bruno, M. M. A., Massi, K. G., Vidal, M. M., & du Vall Hay, J. (2019). Reproductive phenology of three Syagrus species (Arecaceae) in a tropical savanna in Brazil. FLORA, 252, 18–25.

Bustamante, E., & Búrquez, A. (2008). Effects of plant size and weather on the flowering phenology of the Organ Pipe Cactus (Stenocereus thurberi). Annals of Botany, 102, 1019–1030. https://doi.org/10.1093/aob/mcn194

Cunningham, S. A. (2000). What determines the number of seed produced in a flowering event? A case study of Calyptrogyne ghiesbreghtiana (Arecaceae). Australian Journal of Botany, 48, 659–665. https://doi.org/10.1071/BT99012

Du, Y., Li, D., Yang, X., Peng, D., Tang, X., Liu, H., Li, D., Hong, X., & Song, X. (2020). Reproductive phenology and its drivers in a tropical rainforest national park in China: Implications for Hainan gibbon (Nomascus hainus) conservation. Global Ecology and Conservation, 24, e01317. https://doi.org/10.1016/j.gecco.2020.e01317

Dumont, E. R. (1999). The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): an experimental study. Journal of Zoology, 248(2), 219–229. https://doi.org/10.1111/j.1469-7998.1999.tb01198.x

Dunham, A. E., Razafindratsima, O. H., Rakotonirina, P., & Wright, P. C. (2018). Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica, 50(3), 396–404. https://doi.org/10.1111/btp.12564

Engel, V. L., & Martins, F. R. (2005). Reproductive phenology of Atlantic Forest tree species in Brazil: An eleven year study. Tropical Ecology, 46(1), 1–16.

Fenner, M. (1998). The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics, 1(1), 78–91. https://doi.org/10.1078/1433-8319-00053

Fernández-Otárola, M., Sazima, M., & Solferini, V. N. (2013). Tree size and its relationship with flowering phenology and reproductive output in Wild Nutmeg trees. Ecology and Evolution, 3(10), 3536–3544. https://doi.org/10.1002/ece3.742

Fournier, L. A., & Charpantier, C. (1975). El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Turrialba, 25, 45–48.

Frasier, C. L., Albert, V. A., & Struwe, L. (2008). Amazonian lowland, white sand areas as ancestral regions for South American biodiversity: biogeographic and phylogenetic patterns in Potalia (Angiospermae: Gentianaceae). Organisms, Diversity & Evolution, 8, 44–57. https://doi.org/10.1016/j.ode.2006.11.003

Fuzessy, L. F., Janson, C., & Silveira, F. A. O. (2018) Effects of seed size and frugivory degree on dispersal by Neotropical frugivores. Acta Oecologica, 93, 41–47. https://doi.org/10.1016/j.actao.2018.10.004

Garwood, N. C. (1983) Seed germination in a seasonal tropical forest in Panama: A community study. Ecological Monographs, 53, 159–181. https://doi.org/10.2307/1942493

Herrera, C. M. (1991). Dissecting factors responsible for individual variation in plant fecundity. Ecology 72, 1436–1448. https://doi.org/10.2307/1941116

Herrera, C. M. (1993). Selection on floral morphology and environmental determinants of fecundity in a hawk moth-pollinated violet. Ecological Monographs, 63, 251–275. https://doi.org/10.2307/2937101

Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T., & Tosi, J. A. (1971). Forest environments in tropical life zones: A pilot study. Pergamon Press.

Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology, Evolution, and Systematics, 13, 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221

Huang, Y., Lee, Y., Kuo, Y., Chang, S., & Wu, C. (2019). Fruiting phenology and nutrient content variation among sympatric figs and the ecological correlates. Botanical Studies, 60, 27. https://doi.org/10.1186/s40529-019-0275-9

Janzen, D. H. (1967). Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution, 21(3), 620–637. https://doi.org/10.2307/2406628

Jordano, P. (1992). Fruits and frugivory. In M. Fenner (Ed.), Seeds: The Ecology of Regeneration in Plant Communities (pp. 105–156). CAB International.

Lasky, J. R., Uriarte, M., & Muscarella, R. (2016). Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality. Environmental Research Letters, 11. https://doi.org/10.1088/1748-9326/11/11/115003

Ley-López, J. M., & Avalos, G. (2017). Propagation of the palm flora in a lowland tropical rainforest in Costa Rica: Fruit collection and germination patterns. Tropical Conservation Science, 10, 1–12. https://doi.org/10.1177/1940082917740703

Lobova, T., Geiselman, C., & Mori, S. (2009). Seed dispersal by bats in the Neotropics. New York Botanical Garden Press.

Melo, F., Chazdon, R. L., Medellín, R. A., Ceballos, G., & Rodríguez-Herrera, B. (2009). Small tent-roosting bats promote dispersal of large-seeded plants in a Neotropical forest. Biotropica, 41(6), 737–743. https://doi.org/10.1111/j.1744-7429.2009.00528.x

Mendoza, I., Peres, C. A., & Morellato, L. P. C. (2017). Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global and Planetary Change, 148, 227–241. https://doi.org/10.1016/j.gloplacha.2016.12.001

Minor, D., & Kobe, R. K. (2019). Fruit production is influenced by tree size and size‐asymmetric crowding in a wet tropical forest. Ecology and Evolution, 9, 1458–1472. https://doi.org/10.1002/ece3.4867

Morellato, L. P. C., Camargo, M. G. G., D’Eca Neves, F. F., Luize, B. G., Mantovani, A., & Hudson, I. L. (2010). The influence of sampling method, sample size, and frequency of observations on plant phenological patterns and interpretation in tropical forest trees. In I. L. Hudson & M. R. Keatley (Eds.), Phenological Research. Springer Science. https://doi.org/10.1007/978-90-481-3335-2_5

Newstrom, L. E., Frankie, G. W., & Baker, H. G. (1994). A new classification for plant phenology based on flowering patterns in lowland tropical forest trees at La Selva, Costa Rica. Biotropica, 26(2), 141–159. https://doi.org/10.2307/2388804

Numata, S., Yamaguchi, K., Shimizu, M., Sakurai, G., Morimoto, A., Alias, N., Azman, N. Z. N., Hosaka, T., & Satake, A. (2022). Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. Communications Biology, 5, 311. https://doi.org/10.1038/s42003-022-03245-8

Ollerton, J., & Lack, A. (1998). Relationships between flowering phenology, plant size and reproductive success in shape Lotus corniculatus (Fabaceae). Plant Ecology, 139, 35–47. https://doi.org/10.1023/A:1009798320049

Ong, L., McConkey, K. R., & Campos-Arceiz, A. (2021). The ability to disperse large seeds, rather than body mass alone, defines the importance of animals in a hyper-diverse seed dispersal network. Journal of Ecology, 110, 313–326. https://doi.org/10.1111/1365-2745.13809

Opler, P. A., Frankie, G. W., & Baker, H. G. (1980). Comparative phenological studies of treelet and shrub species in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology, 68, 167–188. https://doi.org/10.2307/2259250

Pires, J. P. A., Marino, N. A. C., Silva, A. G., Rodrigues, J. F. P., Freitas, L. (2018). Tree community phenodynamics and its relationship with climatic conditions in a lowland tropical rainforest. Forests, 9(3), 114. https://doi.org/10.3390/f9030114

R Core Team. (2024). R: language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

Ramírez, N. (2006). Pollination in the Venezuelan Central Plain: Relationships between flowering phenology, pollination modes, and pollinating agents. American Journal of Botany, 93(7), 997–1006. https://doi.org/10.3732/ajb.93.7.997

Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179–214. https://doi.org/10.1146/annurev.es.16.110185.001143

Rincón, M., Roubik, D. W., Finegan, B., Delgado, D., & Zamora, N. (1999). Understory bees and floral resources in logged and silviculturally treated Costa Rican rainforest plots. Journal of the Kansas Entomological Society, 72(4), 379–393.

Rodríguez-Herrera, B., Rodríguez, M. E., Fernández-Otárola, M. (2018). Ecological networks between tent-roosting bats (Phyllostomidae: Stenodermatinae) and the plants used in a Neotropical rainforest. Acta Chiropterologica, 20(1), 139–145. https://doi.org/10.3161/15081109ACC2018.20.1.010

Sánchez, J. (2010). Gentianaceae. In B. E. Hammel, M. H. Grayum, C. Herrera & N. Zamora (Eds.), Manual de plantas de Costa Rica Vol. V. Monographs in Systematic Botany from the Missouri Botanical Garden, 119, 821–840.

Sakai, S. (2001). Phenological diversity in tropical forests. Population Ecology, 43, 77–86. https://doi.org/10.1007/PL00012018

Sakai, S., Momose, K., Yumoto, T., Nagamitsu, T., Nagamasu, H., Karim, A., Nakashizuka, T., & Inoue, T. (2005). Plant Reproductive Phenology and General Flowering in a Mixed Dipterocarp Forest. In D. W. Roubik, S. Sakai, A. A. Hamid Karim (Eds.), Pollination ecology and the rain forest. Ecological studies (analysis and synthesis) (Vol.174). Springer.

Sebastián-González, E. (2017). Drivers of species' role in avian seed-dispersal mutualistic networks. Journal of Animal Ecology, 86, 878–887. https://doi.org/10.1111/1365-2656.12686

Struwe, L., & Albert, V. (2004). A Monograph of Neotropical Potalia Aublet (Gentianaceae: Potalieae). Systematic Botany, 29, 670–701. https://doi.org/10.1600/0363644041744428

Susko, D. J. & Lovett-Doust, L. (2000). Plant-size and fruit-position effects on reproductive allocation in Alliaria petiolata (Brassicaceae). Canadian Journal of Botany, 78(11), 1398–1407. https://doi.org/10.1139/b00-110

Tang, J., Korner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S. J., & Yang, X. (2016). Emerging opportunities and challenges in phenology: a review. Ecosphere, 7(8), e01436. https://doi.org/10.1002/ecs2.1436

Ting, S., Hartley S., & Burns, K. C. (2008). Global patterns in fruiting seasons. Global Ecology and Biogeography, 17, 648–657. https://doi.org/10.1111/j.1466-8238.2008.00408.x

Tracey, A. J., & Aarssen, L. W. (2011). Competition and body size in plants: the between-species tradeoff for maximum potential versus minimum reproductive threshold size. Journal of Plant Ecology, 4(3), 115–122. https://doi.org/10.1093/jpe/rtr008

Van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377. https://doi.org/10.1146/annurev.es.24.110193.002033

Villalobos-Chaves, D., Vargas Murillo, J., Rojas-Valerio, E., Keeley, B. W., & Rodríguez-Herrera, B. (2016). Understory bat roosts, availability and occupation patterns in a Neotropical rainforest of Costa Rica. Revista de Biología Tropical, 64(3), 1333–1343. https://doi.org/10.15517/rbt.v64i3.21093

Wender, B. W., Harrington, C. A., & Tappeiner, J. C., II. (2004). Flower and fruit production of understory shrubs in western Washington and Oregon. Northwest Science, 78(2), 124–140.

Wheelwright, N. T. (1986). A seven-year study of individual variation in fruit production in tropical bird-dispersed tree species in the family Lauraceae. In A. Estrada & T. H. Fleming (Eds.), Frugivores and seed dispersal (pp. 19–35). Springer. https://doi.org/10.1007/978-94-009-4812-9_3

Wilczek, A. M., Burghardt, L. T., Cobb, A. R., Cooper, M. D., Welch, S. M., & Schmitt, J. (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1555), 3129–3147. https://doi.org/10.1098/rstb.2010.0128

Wright, S. J., & Calderon, O. (1995). Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology, 83(6), 937–948. https://doi.org/10.2307/2261176

Zar, J. H. (1999). Biostatistical Analysis (4th ed.). Prentice Hall.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.