Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
The performance of mass testing strategies for COVID-19: a case study for Costa Rica
PDF
HTML
EPUB

Supplementary Files

PDF-suppl1
Doc-suppl1

Keywords

mass testing; COVID-19 Costa Rica; RT-qPCR; antigen test; RT-LAMP; pooling; detection strategies
pruebas masivas; COVID-19 Costa Rica; RT-qPCR; pruebas de antígenos; RT-LAMP; agrupamiento; estrategias de detección

How to Cite

Solís, M., Pasquier-Jaramillo, C. ., Núñez-Corrales, S., Madrigal-Redondo, G., & Gatica-Arias, A. (2025). The performance of mass testing strategies for COVID-19: a case study for Costa Rica. Revista De Biología Tropical, 73(1), e57971. https://doi.org/10.15517/rev.biol.trop.v73i1.57971

Abstract

Introduction: In this article, we derive the behavior of four different mass testing strategies, grounded in guidelines and public health policies issued by the Costa Rican public healthcare system. Objective: To formally develop the changes of each studied mass testing strategy under different contexts related to people’s risk, costs of testing, and accessibility to alternative testing technologies. Methods: We take over a pre-classifier applied to individuals capable of partitioning suspected individuals into low-risk and high-risk groups. We consider the impact of three testing technologies: RT-qPCR, antigen-based testing, and saliva-based testing (RT-LAMP). When available, we introduced a category of essential workers. Results: Numerical simulation results confirm that strategies using only RT-qPCR tests cannot achieve sufficient stock capacity to provide efficient detection regardless of prevalence, sensitivity, or specificity. Strategies that harness the power of pooling and RT-LAMP either maximize stock capacity, detection efficiency, or both. Conclusions: Investing in data quality and classification accuracy can improve the odds of achieving pandemic control and mitigation. Future work will be focused on, based on our findings, constructing representative synthetic data through agent-based modeling and studying the properties of specific pre-classifiers under various scenarios.

https://doi.org/10.15517/rev.biol.trop..v73i1.57971
PDF
HTML
EPUB

References

Avaniss-Aghajani, E., Sarkissian, A., Fernando, F., & Avaniss-Aghajani, A. (2020). Validation of the hologic aptima unisex and multitest specimen collection kits used for endocervical and male urethral swab specimens (aptima swabs) for collection of samples from sars-cov-2-infected patients. Journal of Clinical Microbiology, 58(8), e00753-20. https://doi.org/10.1128/JCM.00753-20

Beaudevin, C., Berlivet, L., Boudia, S., Bourgain, C., Cassier, M., Gaudillière, J.-P., & Löwy, I. (2021). ‘Test, test, test!’: Scarcity, tinkering, and testing policy early in the covid-19 epidemic in france. Medicine Anthropology Theory, 8(2), 13–1 https://doi.org/10.17157/mat.8.2.5116

Brandeau, M. L. (2004). Allocating resources to control infectious diseases. In M. L. Brandeau, F. Sainfort, & W. P. Pierskalla (Eds.), Operations research and health care: A handbook of methods and applications (pp. 443–464). Springer. https://doi.org/10.1007/1-4020-8066-2_17

Brenes-Camacho, G., Araya-Umaña, O. M., González-Quesada, M. E., & Méndez-Fonseca, F. (2013). Estimaciones y proyecciones de población por sexo y edad, 1950-2050. Instituto Nacional de Estadística y Censos (INEC).

Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L., Quinn, T. C., Tenover, F. C., Alland, D., Blaschke, A. J., Bonomo, R. A., Carroll, K. C., Ferraro, M. J., Hirschhorn, L. R., Joseph, W. P., Karchmer, T., MacIntyre, A. T., Reller, L. B., & Jackson, A. F. (2013). Better tests, better care: Improved diagnostics for infectious diseases. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 57(Supplement 3), S139–S170. https://doi.org/10.1093/cid/cit578

Caja Costarricense de Seguro Social. (2021). Memoria Institucional 2021. Caja Costarricense de Seguro Social (CCSS).

Center for Disease Control and Prevention (2020). Interim Guidance for Antigen Testing for SARS-CoV-2. Centers for Disease Control and Prevention.

Centers for Medicare & Medicaid Services (2020, October 15). Changes Medicare Payment to Support Faster COVID-19 Diagnostic Testing [Press Releases]. Centers for Medicare & Medicaid Services.

Comess, S., Wang, H., Holmes, S., & Donnat, C. (2022). Statistical modeling for practical pooled testing during the COVID-19 pandemic. Statistical Science, 37(2), 229–250. https://doi.org/10.1214/22-STS857

Dorfman, R. (1943). The detection of defective members of large populations. The Annals of Mathematical Statistics, 14(4), 436–440. https://doi.org/10.1214/aoms/1177731363

Du, Z., Pandey, A., Bai, Y., Fitzpatrick, M. C., Chinazzi, M., Pastore-Piontti, A. P., Lachmann, M., Vespignani, A., Cowling, B. J., Galvani, A. P., & Meyers, L. A. (2021). Comparative cost-effectiveness of SARS-CoV-2 testing strategies in the USA: A modelling study. The Lancet Public Health, 6(3), e184–e191. https://doi.org/10.1016/S2468-2667(21)00002-5

Escobar, M., Jeanneret, G., Bravo-Sánchez, L., Castillo, A., Gómez, C., Valderrama, D., Roa, M., Martínez, J., Madrid-Wolff, J., Cepeda, M., Guevara-Suarez, M., Sarmiento, O. L., Medaglia, A. L., Forero-Shelton, M., Velasco, M., Pedraza, J. M., Laajaj, R., Restrepo, S., & Arbelaez, P. (2022). Smart pooling: AI-powered COVID-19 informative group testing. Scientific Reports, 12(1), 6519. https://doi.org/10.1038/s41598-022-10128-9

García-Puerta, Y. E., Vásquez-Brenes, P. A., Calvo-Alpízar, J. G., Barboza-Chinchilla, L. A., Sánchez-Peña, F. A., Rivas-Chaves, T., Mery-Valdovinos, G. A., & Pérez-Rosales, M. D. (2023). Modelos matemáticos y análisis estadísticos implementados para el estudio de Covid19 en Costa Rica. Organización Panamericana de la Salud.

Grantz, K. H., Lee, E. C., McGowan, L. D., Lee, K. H., Metcalf, C. J. E., Gurley, E. S., & Lessler, J. (2021). Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study. PLoS Medicine, 18(4), e1003585. https://doi.org/10.1371/journal.pmed.1003585

Haigh, K. Z., & Gandhi, M. (2021). COVID-19 Mitigation with appropriate safety measures in an essential workplace: lessons for opening work settings in the United States during COVID-19. Open Forum Infectious Diseases, 8(4), ofab086. https://doi.org/10.1093/ofid/ofab086

He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., Mo, X., Chen, Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M., Wu, Y., Zhao, L., … Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine, 26, 672–675 https://doi.org/10.1038/s41591-020-0869-5

Huang, C., Wang, M., Rafaqat, W., Shabbir, S., Lian, L., Zhang, J., Lo, S., & Song, W. (2022). Data-driven test strategy for COVID-19 using machine learning: A study in Lahore, Pakistan. Socio-Economic Planning Sciences, 80, 101091. https://doi.org/10.1016/j.seps.2021.101091

Jehi, L., Ji, X., Milinovich, A., Erzurum, S., Rubin, B. P., Gordon, S., Young, J. B., & Kattan, M. W. (2020). Individualizing risk prediction for positive coronavirus disease 2019 testing: results from 11 672 patients. Chest, 158(4), 1364–1375. https://doi.org/10.1016/j.chest.2020.05.580

Kırkızlar, E., Faissol, D. M., Griffin, P. M., & Swann, J. L. (2010). Timing of testing and treatment for asymptomatic diseases. Mathematical Biosciences, 226(1), 28–37. https://doi.org/10.1016/j.mbs.2010.03.007

Larremore, D. B., Wilder, B., Lester, E., Shehata, S., Burke, J. M., Hay, J. A., Tambe, M., Mina, M. J., & Parker, R. (2021). Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Science Advances, 7(1), eabd5393. https://doi.org/10.1126/sciadv.abd5393

Mercer, T. R., & Salit, M. (2021). Testing at scale during the COVID-19 pandemic. Nature Reviews Genetics, 22(7), 415–426. https://doi.org/10.1038/s41576-021-00360-w

Millioni, R., & Mortarino, C. (2021). Test Groups, not individuals: A review of the pooling approaches for SARS-CoV-2 diagnosis. Diagnostics, 11(1), 68. https://doi.org/10.3390/diagnostics11010068

Ministerio de Salud Costa Rica. (2021a). Informe de Gestión 2020-2021. Ministerio de Salud (MINSA).

Ministerio de Salud Costa Rica. (2021b). LS-SS-012. Lineamientos generales para el uso de pruebas alternativas (antígeno, pruebas moleculares isotérmicas) al estándar de oro (RT- PCR) para el diagnóstico de COVID-19. Ministerio de Salud (MINSA).

Ministerio de Salud Costa Rica. (2022). LS-VS-001. Lineamientos Nacionales para la Vigilancia de la enfermedad COVID-19 (versión 26) (LS-VS-001-26). Ministerio de Salud (MINSA).

Nagura-Ikeda, M., Imai, K., Tabata, S., Miyoshi, K., Murahara, N., Mizuno, T., Horiuchi, M., Kato, K., Imoto, Y., Iwata, M., Mimura, S., Ito, T., Tamura, K., & Kato, Y. (2020). Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RT-qPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. Journal of Clinical Microbiology, 58(9), e01438-20. https://doi.org/10.1128/JCM.01438-20

Núñez-Corrales, S., & Jakobsson, E. (2020). The epidemiology workbench: A tool for communities to strategize in response to COVID-19 and other infectious diseases. medRxiv, 2020, 20159798. https://doi.org/10.1101/2020.07.22.20159798

Oran, D. P., & Topol, E. J. (2020). Prevalence of asymptomatic SARS-CoV-2 infection: A narrative review. Annals of Internal Medicine, 173(5), 362–367. https://doi.org/10.7326/M20-3012

Oran, D. P., & Topol, E. J. (2021). The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Annals of Internal Medicine, 174(5), 655–662. https://doi.org/10.7326/M20-6976

Österdahl, M. F., Lee, K. A., Lochlainn, M. N., Wilson, S., Douthwaite, S., Horsfall, R., Sheedy, A., Goldenberg, S. D., Stanley, C. J., Spector, T. D., & Steves, C. J. (2020). Detecting SARS-CoV-2 at point of care: Preliminary data comparing loop-mediated isothermal amplification (LAMP) to polymerase chain reaction (PCR). BMC Infectious Diseases, 20, 783. https://doi.org/10.1186/s12879-020-05484-8

Peeling, R. W., Olliaro, P. L., Boeras, D. I., & Fongwen, N. (2021). Scaling up COVID-19 rapid antigen tests: Promises and challenges. The Lancet Infectious Diseases, 21(9), e290–e295. https://doi.org/10.1016/S1473-3099(21)00048-7

Plantes, P. J., Fragala, M. S., Clarke, C., Goldberg, Z. N., Radcliff, J., & Goldberg, S. E. (2021). Model for mitigation of workplace transmission of COVID-19 through population-based testing and surveillance. Population Health Management, 24(Supplement 1), S16–S25. https://doi.org/10.1089/pop.2020.0322

Prado, A. M., Pearson, A. A., Mora-García, C. A., Guha, M., Tanugi-Carresse, A. C., Mullen, L., Bennett, S., & Nuzzo, J. (2023). COVID-19 response and maintenance of essential health services in Costa Rica. Exemplars in Global Health.

Rubinstein, A. (2025). How Latin American health care systems will respond to the next crises? Lessons and challenges after the COVID-19 pandemic. Archives of Medical Research, 56(1), 103069. https://doi.org/10.1016/j.arcmed.2024.103069

Sah, P., Fitzpatrick, M. C., Zimmer, C. F., Abdollahi, E., Juden-Kelly, L., Moghadas, S. M., Singer, B. H., & Galvani, A. P. (2021). Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proceedings of the National Academy of Sciences, 118(34), e2109229118. https://doi.org/10.1073/pnas.2109229118

Saidani, M., Kim, H., & Kim, J. (2021). Designing optimal COVID-19 testing stations locally: A discrete event simulation model applied on a university campus. PLoS ONE, 16(6), e0253869. https://doi.org/10.1371/journal.pone.0253869

Sandmann, F. G., White, P. J., Ramsay, M., & Jit, M. (2020). Optimizing benefits of testing key workers for infection with SARS-CoV-2: A mathematical modeling analysis. Clinical Infectious Diseases, 71(12), 3196–3203. https://doi.org/10.1093/cid/ciaa901

Schwab, P., DuMont-Schütte, A., Dietz, B., & Bauer, S. (2020). Clinical predictive models for COVID-19: Systematic study. Journal of Medical Internet Research, 22(10), e21439. https://doi.org/10.2196/21439

Segura-Ulate, I., Bolívar-González, A., Madrigal-Redondo, G., Nuñez-Corrales, S., & Gatica-Arias, A. (2022). Reverse-Transcription Loop-Mediated Isothermal Amplification and alternative protocols for lower cost, large-scale COVID-19 testing: Lessons from an emerging economy. Revista de Biología Tropical, 70(1), 173–189. https://doi.org/10.15517/rev.biol.trop..v70i1.47407

Tindale, L. C., Stockdale, J. E., Coombe, M., Garlock, E. S., Lau, W. Y. V., Saraswat, M., Zhang, L., Chen, D., Wallinga, J., & Colijn, C. (2020). Evidence for transmission of COVID-19 prior to symptom onset. eLife, 9, e57149. https://doi.org/10.7554/eLife.57149

Watkins, A. E., Fenichel, E. P., Weinberger, D. M., Vogels, C. B. F., Brackney, D. E., Casanovas-Massana, A., Campbell, M., Fournier, J., Bermejo, S., Datta, R., Dela Cruz, C. S., Farhadian, S. F., Iwasaki, A., Ko, A. I., Grubaugh, N. D., & Wyllie, A. L. (2021). Increased SARS-CoV-2 testing capacity with pooled saliva samples. Emerging Infectious Diseases, 27(4), 1184–1187 https://doi.org/10.3201/eid2704.204200

Wiencek, J. R., Head, C. L., Sifri, C. D., & Parsons, A. S. (2020). Clinical ordering practices of the SARS-CoV-2 antibody test at a large academic medical center. Open Forum Infectious Diseases, 7(10), ofaa406. https://doi.org/10.1093/ofid/ofaa406

Wynants, L., Calster, B. V., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Albu, E., Arshi, B., Bellou, V., Bonten, M. M. J., Dahly, D. L., Damen, J. A., Debray, T. P. A., Jong, V. M. T., De Vos, M., Dhiman, P., Ensor, J., Gao, S., Haller, M. C., … van Smeden, M. (2020). Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ, 369, m1328. https://doi.org/10.1136/bmj.m1328

Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 4(6), 337–348. https://doi.org/10.1016/S1473-3099(04)01044-8

Zhang, J. J., Dong, X., Liu, G. H., & Gao, Y. (2023). Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clinical Reviews in Allergy & Immunology, 64, 90–107. https://doi.org/10.1007/s12016-022-08921-5

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Revista de Biología Tropical

Downloads

Download data is not yet available.