Revista geológica de América central ISSN Impreso: 0256-7024 ISSN electrónico: 2215-261X

OAI: https://www.revistas.ucr.ac.cr/index.php/geologica/oai
Análisis del proceso de transporte vía SFT, de las erupciones del 2014-2015 del volcán Turrialba
PDF

Palabras clave

SFT
Turrialba volcano
ash transport processes
Wohletz transport dispersion
SFT
volcán Turrialba
procesos de transporte de ceniza
dispersión por transporte de Wohletz

Cómo citar

Brenes-André, J. (2018). Análisis del proceso de transporte vía SFT, de las erupciones del 2014-2015 del volcán Turrialba. Revista geológica De América Central, 58. https://doi.org/10.15517/rgac.v58i0.32674

Resumen

Las tefras de las erupciones del volcán Turrialba (octubre 2014 a abril 2015) fueron analizadas por medio del SFT, pudiéndose determinar 5 procesos de transporte, que fueron analizados según los parámetros de Folk; utilizando la dispersión promedio en lugar de la desviación estandard, y . utilizando la dispersión por transporte g, según se describe en Wohletz et al. (1989). Los resultados obtenidos, no concuerdan con observaciones de campo. Como una alternativa, se examinó la dispersión por transporte g en función de la dispersión por fragmentación γ, encontrándose empíricamente que es posible definir la relación lineal Δ = γ – g = m γ  + b para cada uno de los 11 procesos de transporte identificados por medio de SFT para los dos Grupos de muestras. Los patrones evidentes entre varios de esos Δ sugieren que el valor de la pendiente m es una medida indirecta de la interacciones entre las partículas involucradas en el proceso de transporte. Esta observación sugiere que los números adimensionales (como el de Savage y el de Reynolds) y sus respectivos valores críticos asociados a las corrientes de densidad piroclástica explicarían la aparición de los diversos tipos de transporte detectados por SFT.

https://doi.org/10.15517/rgac.v58i0.32674
PDF

Citas

Alvarado, g. E., Brenes-André, J., Barrantes, M., Vega, E., De Moor, m., Avard, g., Dellino,p., Mele, d., De vitre, c., Di piazza, a., Rizzo, a. L. y carapezza, M. L. (2016). Esclareciendo la actividad eruptiva del Turrialba (Costa Rica) en el 2010-2015. Revista Geológica de América Central, 55, 7-58

Alvarado, g. E., Soto, g. J., Schminke, h-u., Bolge, l. L. y sumita, M. (2006). The 1968 andesitic lateral blast eruption at Arenal Volcano, Costa Rica. Journal of Volcanological and Geothermal Research, 157, 9-33.

Arthur, j., Applegate, j., Melkote, s. y scott, T. (1986). Heavy mineral reconnaissance off the coast of the Apalichocola River delta, Northwest Florida. Florida Geological Survey, Report of Investigation, 95.

Bagnold, R. A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proccedings of the Royal Society of London, A225, 49-63.

Brenes, J. (2013). Aplicación de la teoría de fragmentación/transporte secuencial a los depósitos de las erupciones de 1723 y 1963-65 del volcán Irazú, Costa Rica. Caso dispersión negativa. Revista Geológica de América Central, 48, 63-85.

Brenes, j. y Alvarado, G. E. (2013). Aplicación de la teoría de fragmentación/transporte secuencial a los depósitos de las erupciones de 1723 y 1963-65 del volcán Irazú, Costa Rica. Caso de dispersión positiva y modelo fractal. Revista Geológica de América Central, 48, 87-98.

Brenes-Andre, J. (2016). Modelo fractal de una erupción aplicado a volcanes denominados log-logísticos: Colima, Soufriere y Erebus.- Revista Geológica de América Central, 55, 59-67.

Brown, w. (1984). A theory of sequential fragmentation and its astronomical applications.- Journal of Astrophysics and Astromy, 10, 89-112.

Burgisser, a. y bergantz, G. W. (2002). Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents.- Earth and Planetary Science Letters, 202: 405-418.

Cas, R. A. F. (1989). Physical volcanology in Australian and New Zealand Cainozoic intraplate terrains. En R. W. Johnson (ed.), Intraplate Volcanism in Eastern Australia and New Zealand (pp. 55-85). xxxx: xxxx.

Cas, R. A. F. y Wright, J. V. (1987). Volcanic successions: Modern and ancient: A geological approach to processes, products and successions. London: Unwin Hyman Inc., Allen and Unwin Ltd.

Delinger, R. P. (1987). A model for generation of ash clouds by pyroclastic flows, with appplications to the 1980 eruptions of Mount St. Helens, Washington. Journal of Geophysical Research, 92, 284-298.

Dellino, p., Mele, d., Sulpizio, r., La volpe, l. y braia, G. (2008). A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle charactersitics. Journal of Geophysical Research, 113, B07206.

Dellino, p., Isaia, r., La volpe, l. y orsi, G. (2004a). Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Souther Italy). Journal of Volcanology and Geothermal Research, 133, 193-210.

Dellino, p., Isaia, r. y veneruso, M. (2004b). Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 133, 211-228.

Doeglas, D. J. (1946). Interpretation of the results of mechanical analysis. Journal of Sedimentary Petrology, 16, 19-40.

Druitt, t. H., Calder, e. S., Cole, p. D., Hoblitt, r. P., Loughin, s. C., Norton, g. E., Ritchie, l. J., Sparks, r. S. J. y voight, B. (2002). Small volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills Volcano, Montserrat: An important volcanic hazard. Mem. Geological Society of London, The Eruption of Soufrière Hills Volcano, Montserrat, From 1995 to 1999, 21, 263-279.

Dufek, j. y manga, M. (2008). In situ production of ash in pyroclastic flows. Journal of Geophysical Research, 113, 1-17.

Eschner, T. R. y kircher, J. E. (1984). Interpolation of grain-size distributions from measured sediment data, Platte River. Sedimentology, 31, 569-573.

Fisher, R. V. (1979). Models for pyroclastic surges and pyroclastic flows. Journal of Volcanology and Geothermal Research, 6, 305-318.

Fujii, T. y Nakada, S. (1999). The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges. Journal of Volcanology and Geothermal Research, 89, 159-172.

Geldart, D. (1973). Types of gas fluidization, Powder Technology, 7, 285-292.

Grazanti, e., Ando, s. y vezzoli, G. (2008). Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273, 138-151.

Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35, 245-296.

Kokelaar, b. P., Grahama, r. L., Gray, j. M. N. T. y vallance, J. W. (2004). Fine-grained linings of leveed channels facilitate runout of granular flows. Earth and Planetary Science Letters, 385, 172-180.

Lajeunesse, e., Mangeney-castelnau,a. y vilotte, J.-P. (2004). Spreading of a granular mass on a horizontal plane. Physics of fluids, 16, 2371-2381.

Lowright, r., Wlliams, e.G. y dachille, F. (1972). An analysis of factors controlling deviations in hydraulic equivalence in some modern sands. Journal of Sedimentary Petrology, 42, 635-645.

Lube, g., Huppert, h. E., Sparks, r. S. J. y hallworth, M. A. (2004). Axisymmetric collapses of granular columns. Journal of Fluid Mechanics, 508, 175-199.

Roche, o., Gilbertson, m. A.; Phillips, j.C. y sparks, R. S. J. (2004). Experimental study of gas-fluidized granular flows with implications for pyroplastic flow emplacemen. Journal of Geophysical Research, 109, B10201.

Savage, s.B. Y hutter, K., 1989: The motion of a finite mass of granular material down a rough incline. Journal of Fluids Mechanics, 199, 177-215.

Sheridan, m. F., Wohletz, k. H. y dehn, J. (1987). Discrimination of grain-size subpopulations in pyroclastic deposits. Geology, 15, 367-370.

Sheridan, M. F. (1971). Particle-size characteristics of pyoroclastic tuffs. Journal of Geophysical Research, 76, 5627-5634.

Soto, j. y alvarado, G. E. (2006). The eruptive history of Arenal volcano, Costa Rica, 7ka to present. Journal of Volcanology and Geothermal Research, 157, 254-269.

Sparks, r. S. J. y wilson, L. (1976). A model for the formation of ignimbrite by gravitational column collapse. Journal of the Geological Society of London, 132, 441-451.

Sparks, r. S. J., Wilson, l. y hulme, G. (1978). Theoretical modeling of generation, movement, and emplacement of pyroclastic density flows by column collapse. Journal of Geophysical Research, 83, 1727-1739.

Spera, J. (1984). Some numerical experiments on the withdraw of magma from crustal reservoirs. Journal of Geophysical Research, 89, 8222-8236.

Swan, d., Clague, j. J. y luternauer, J. L. (2006). Grain-size statistics I; Evaluation of the Folk and Ward graphic measures. Journal of Sedimentary Research, 48, 863-878.

Valentine, G. A. (1987). Stratified flow in pyroclastic surges. Bulletin of Volcanology, 49, 616-630.

Visher, G. S. (1969). Grain-size distributions and depositional processes. Journal of Sedimentary Petrology, 39: 1074-1106.

Wilson, C.J.N., 1980:- The role of fluidization in the emplcement of pyroclastic claws: an eperimental approach. Journal of Volcanology and Geothermal Research, 8, 231-249.

Wohletz, K. (1998). Pyroclastic surges and compressible two-phase flow. En A. Freundt y M. Rosi (eds), From magma to tephra: modelling physical processes of explosive volcanic eruptions (pp. 247-312). Amsterdan: Elsevier.

Wohletz, k. H., Sheridan, m. F. y brown, K. (1989). Particle size distribution and the Sequential Fragmentation/Transport Theory Applied to Volcanic Ash. Journal of Geophysical Research, 94, 15 703-15 721.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.