Use of RPAS for precision evapotranspiration in rice fields to reduce water consumption

Authors

DOI:

https://doi.org/10.15517/am.2024.56529

Keywords:

rice paddies, energy balance, drone, controlled dry irrigation

Abstract

Introduction. The estimation of crop evapotranspiration (ETc) allows knowing the water requirements of the crop, which helps to propose water-saving irrigation techniques. Aim. Use Remotely Piloted Aircraft System (RPAs) for greater precision of evapotranspiration in rice fields to reduce water consumption, Materials and methods. The distribution of plots followed a completely randomized block design with a factorial structure of two experiments, flooded irrigation (E1) and controlled dry irrigation (E2), with three varieties of rice (IR43, IR71706, Sahod Ulan 12) in the Area. Experimental Irrigation (AER) of the Unalm. Eight flights of an RPAS were carried out, distributed between the tillering and cotton knitting stages, in January and February 2019. Results. The combined analysis of treatments with analysis of variance and Duncan's test with p < 0.05 revealed a significant difference in ETc between E1 and E2; However, no significant difference was found between rice varieties. Maximum values of ETc and yield were obtained for E1 of 4.50 (mm/d), 10389 (Kg/ha) and for E2 of 3.7 (mm/d), 9710 Kg/ha), respectively. Conclusions. The use of a remotely piloted aircraft system allowed for improved temporal and spatial resolution of multispectral and thermal images to achieve greater precision in crop evapotranspiration (ETc) under two irrigation regimes. A 24% reduction in ETc was achieved under deficit irrigation, resulting in a water saving of 855 m3/ha.

Downloads

Download data is not yet available.

References

Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

Allen, R. G., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Kelly, C., & Trezza, R. (2013). Automated calibration of the METRIC-Landsat evapotranspiration process. Journal of the American Water Resources Association, 49(3), 563–576. https://doi.org/10.1111/jawr.12056

Acharya, B., & Sharma, V. 2021. Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. In Remote Sensing, 13(9), Article 1822.

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213, 198–212. https://doi.org/10.1016/s0022-1694(98)00253-4

Bhattarai, N., Quackenbush, L. J., Im, J., & Shaw, S. B. (2017). A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 12(2), 178–192. https://doi.org/10.1016/j.rse.2017.05.009

Castañeda, C., Flores Magdaleno, H., Martínez Menes, M., Esparza Govea, S. (2018). Estimación de la evapotranspiración mediante un balance de energía utilizando sensores remotos. Ecosistemas y Recursos Agropecuarios, 5(15), 537–545. https://doi.org/10.19136/era.a5n15.1647

Food and Agriculture Organization Statistics. (2022). Faostat: FAO Statistical Databases. Food & Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#data/QC

Folhes, M. T., Rennó, C. D., & Soares, J. V. (2009). Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agricultural Water Management, 96(10), 1398–1408. https://doi.org/10.1016/j.agwat.2009.04.021

Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., van Groenigen, K. J., & Linquist, B. (2019). Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 234, 47–54. https://doi.org/10.1016/j.fcr.2019.02.010

Liu, X., Xu, J., Yang, S., & Zhang, J. (2018). Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteorology and Atmospheric Physics, 130(2), 227–240. https://doi.org/10.1007/s00703-017-0507-z

Machaca, R., Pino, E., Ramos, L., Quille, J., & Torres, A. (2022). Estimación de la evapotranspiración con fines de riego en tiempo real de un olivar a partir de imágenes de un drone en zonas áridas, caso La Yarada, Tacna, Perú. Idesia (Arica), 40(2), 55-65. https://doi.org/10.4067/S0718-34292022000200055

Mendoza, C., Postgraduados, C. de, Ramírez, C., Ojeda, W., Flores, H., Instituto Mexicano de Tecnología del Agua, & Colegio de Postgraduados. (2017). Estimation of leaf area index and yield of greenhouse-grown poblano pepper. Ingeniería agrícola y biosistemas, 9(1), 37–50. https://doi.org/10.5154/r.inagbi.2017.04.009

Neira, E., Ramos, L., & Razuri, L. R. (2020). Coeficiente del cultivo (Kc) del arroz a partir de lisímetro de drenaje en La Molina, Lima-Perú. Idesia (Chile), 38(2), 49–55. https://doi.org/10.4067/s0718-34292020000200049

Nassar, A., Torres‐Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., Nieto, H., Alsina, M. M., White, W., McKee, L., Coopmans, C., Sanchez, L., & Dokoozlian, N. 2021. Assessing daily evapotranspiration methodologies from one‐time‐of‐day suas and ec information in the grapex project. Remote Sensing, 13(15), Article 2887.

Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A. D., Sibanda, M., Chimonyo, V. G. P., & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned Aerial Vehicles. Agriculture, 10(7), Article 256. https://doi.org/10.3390/agriculture10070256

Niu, H., Hollenbeck, D., Zhao, T., Wang, D., & Chen, Y. (2020).Evapotranspiration estimation with small UAVs in precision agriculture. Sensors (Basel, Switzerland), 20(22), Article 6427. https://doi.org/10.3390/s20226427

Porras Jorge, R., Ramos Fernández, L., Ojeda Bustamante, W., & Ontiveros Capurata, R. (2020). Performance assessment of the AquaCrop model to estimate rice yields under alternate wetting and drying irrigation in the coast of Peru. Scientia agropecuaria, 11(3), 309–321. https://doi.org/10.17268/sci.agropecu.2020.03.03

Quille Mamani, J., Ramos Fernández, L., & Ontiveros Capurata, R. (2021). Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes VANT. Revista de teledetección, (58), 23-38. https://doi.org/10.4995/raet.2021.13699

Saha, S., Ahmmed R,. & Jahan, N. (2022). Actual Evapotranspiration Estimation Using Remote Sensing: Comparison of Sebal and Metric Models. In Tarekul Islam GM, Shampa S, & Chowdhury AIA (Eds), Water Management: A View from Multidisciplinary Perspectives (pp. 365 – 383). Springer, Cham . https://doi.org/10.1007/978-3-030-95722-3_18

Sawadogo, A., Kouadio, L., Traoré, F., Zwart, S. J., Hessels, T., & Gündoğdu, K. S. (2020). Spatiotemporal assessment of irrigation performance of the Kou Valley irrigation scheme in Burkina Faso using satellite remote sensing-derived indicators. ISPRS International Journal of Geo-Information, 9(8), Article 484. https://doi.org/10.3390/ijgi9080484

Sisheber, B., Marshall, M., Mengistu, D., & Nelson, A. (2022). Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 106, Article 102670. https://doi.org/10.1016/j.jag.2021.102670

Suwanlertcharoen, T., Chaturabul, T., Supriyasilp, T., & Pongput, K. (2023). Estimation of Actual Evapotranspiration Using Satellite-Based Surface Energy Balance Derived from Landsat Imagery in Northern Thailand. Water, 15(3), Article 450. https://doi.org/10.3390/w15030450

Taherparvar, M., & Pirmoradian, N. (2018). Estimation of rice evapotranspiration using reflective images of Landsat satellite in sefidrood irrigation and drainage network. Rice science, 25(2), 111–116. https://doi.org/10.1016/j.rsci.2018.02.003

Tsouni, A., Kontoes, C., Koutsoyiannis, D., Elias, P., & Mamassis, N. (2008). Estimation of actual evapotranspiration by remote sensing: Application in Thessaly plain, Greece. Sensors (Basel, Switzerland), 8(6), 3586–3600. https://doi.org/10.3390/s8063586

Wei, G., Cao, J., Xie, H., Xie, H., Yang, Y., Wu, C., Cui, Y., & Luo, Y. (2022). Spatial-temporal variation in paddy evapotranspiration in subtropical climate regions based on the SEBAL model: A case study of the Ganfu Plain irrigation system, southern China. Remote Sensing, 14(5), Article 1201. https://doi.org/10.3390/rs14051201

Zhou, S., Sun, H., Bi, J., Zhang, J., Riya, S., & Hosomi, M. (2020). Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing. Soil & Tillage Research, 200, 104610. https://doi.org/10.1016/j.still.2020.104610

Published

2024-04-11

How to Cite

Quispe-Tito, D. J. ., Ramos-Fernández, L., Pino-Vargas, E. ., Quille-Mamani, J., & Torres-Rua, A. (2024). Use of RPAS for precision evapotranspiration in rice fields to reduce water consumption . Agronomía Mesoamericana. https://doi.org/10.15517/am.2024.56529

Issue

Section

Articles