Endophytic fungi associated to Vitis vinifera with antibiosis capacity against Botrytis cinerea

Authors

DOI:

https://doi.org/10.15517/am.2024.56193

Keywords:

antagonism, metabolites, mold, biocontrol

Abstract

Introduction. Endophytic fungi (EF) in grapevines (Vitis vinifera) hold significant potential for agricultural applications and could serve as potential biological control agents for vineyards. Objective. To isolate and identify endophytic fungi (EF) from grapevine plants capable of displaying antibiosis towards Botrytis cinerea. Materials and methods. Young and mature branches were collected from forty healthy grapevine plants across seven production lots in the Cañete province, Lima, Peru, between March and May 2022. EF isolation was carried out from 702 disinfected tissue sections on potato dextrose agar (PDA) medium, with genus-level identification. Secondary metabolites were extracted from twenty-eight EF strains to determine their inhibition of the pathogen’s mycelium growth. Analysis of variance (ANOVA) was conducted using the Minitab statistical software for evaluated parameters. Results. A total of 129 EF strains were isolated from leaves and stems of young and mature grapevine branches, encompassing seven genera (Trichoderma, Aspergillus, Alternaria, Cladosporium, Fusarium, Nigrospora, and Stemphylium). The highest frequency occurred in leaves and mature branches; Trichoderma and Alternaria were the most prevalent genera, constituting 22.48% and 21.71% of total isolates, respectively. Metabolites derived from the EFVH-01 strain of the Cladosporium genus, as well as EF-99 and EF-70 strains of the Alternaria genus, displayed the greatest impact on inhibiting the pathogen’s mycelium growth. Conclusions. Strains of endophytic fungi of the genus Cladosporium and Alternaria showed antibiosis capacity towards Botrytis cinerea at the laboratory scale and could potentially serve as biocontrols, offering an alternative to chemical disease management in grapevines.

Downloads

Download data is not yet available.

References

Aleynova, O. A., Nityagovsky, N. N., Suprun, A. R., Ananev, A. A., Dubrovina, A. S., & Kiselev, K. V. (2022). The diversity of fungal endophytes from wild grape Vitis amurensis Rupr. Plants, 11(21), Article 2897. https://doi.org/10.3390/plants11212897.

Abdelaziz, A. M., El-Wakil, D. A., Attia, M. S., Ali, O. M., AbdElgawad, H., & Hashem, A. H. (2022). Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Zea mays L. Using Endophytic Aspergillus fumigatus. Journal of Fungi, 8(5), Article. 482. https://doi.org/10.3390/jof8050482

Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.). Macmillan Publishing Company.

Barron, G. L. (1968). The genera of Hyphomycetes from soil. Baltimore. The Williams and Wilkins Co.

Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11(1), 21–32. https://doi.org/10.1038/nrmicro2916

Busby, P., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: Modifiers of plant disease. Plant Molecular Biology review, 90, 645-655. https://doi.org/10.1007/s11103-015-0412-0

Casieri, L., Hofstetter, V., Viret, O., & Gindro, K. (2009). Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathologia Mediterranea, 48(1), 73–83. https://oajournals.fupress.net/index.php/pm/article/view/5268

Cosoveanu, A., Gimenez-Mariño, C., Cabrera, Y., Hernandez, G., & Cabrera, R. (2014). Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. International Journal of Agriculture and Crop Sciences, 7(15), 1497-1503.

De Miccolis Angelini, R. M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S., & Faretra, F. (2014). Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science, 70(12), 1785-1796. https://doi.org/10.1002/ps.3711

De Sousa Leite, T., Cnossen-Fassoni, A., Liparini Pereira, O., Mizubuti Gomide, E., Fernandes de Araújo, E., & Vieira de Queiroz, M. (2013). Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. Journal of Microbiology, 51(1), 56-69. https://doi.org/10.1007/s12275-013-2356-x

Deyett, E., & Rolshausen, P. E. (2020). Endophytic microbial assemblage in grapevine. FEMS Microbiology Ecology, 96(5), Article fiaa053. https://doi.org/10.1093/femsec/fiaa053

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). InfoStat software estadistico, Manual del Usuario: Vol. Grupo Infostad (1.1). Universidad Nacional de Córdoba.

El-Sayed, A. S. A., & Ali, G. S. (2020). Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasitica. Biological Control, 140, Article 104072. https://doi.org/10.1016/j.biocontrol.2019.104072

Fan, Y., Gao, L., Chang, P., & Li, Z. (2020). Endophytic fungal community in grape is correlated to foliar age and domestication. Annals of Microbiology, 70(1), Article 30. https://doi.org/10.1186/s13213-020-01574-9

Feijó de Lima, T. E., & da Silva Cavalcanti, M. (2014). Fungos endófitos e do filoplano de Caesalpinia echinata Lam da estação ecológica de Tapacurá, PE. Agrotrópica, 26(1), 43-50. https://www.gov.br/agricultura/pt-br/assuntos/ceplac/publicacoes/revista-agrotropica/artigos/2014-DOI-10.21757/0103-3816-2014v26n1p43-50.pdf

Gomes Fernandes, E., Liparini Pereira, O., Cânedo da Silva, C., Pereira Bento, C. B., & Vieira de Queiroz, M. (2015). Diversity of endophytic fungi in Glycine max. Microbiological Research, 181, 84-92. https://doi.org/10.1016/j.micres.2015.05.010

González, V., & Tello, M. L. (2011). The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity, 47(1), 29-42. https://doi.org/10.1007/s13225-010-0073-x

Halo, B. A., Al-Yahyai, R. A., & Al-Sadi, A. M. (2021). Biological control of - Pythium aphanidermatum induced cucumber and radish damping-off by an endophytic fungus, Cladosporium omanense isolate 31R. Biocontrol science and technology, 31(3), 235-251. https://doi.org/10.1080/09583157.2020.1844148

Kecskeméti, E., Berkelmann-Löhnertz, B., & Reineke, A. (2016). Are Epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L.) different between conventional, organic, and biodynamic grapes? PLoS ONE, 11(8), Article e0160852. https://doi.org/10.1371/journal.pone.0160852

Kernaghan, G., Mayerhofer, M., & Griffin, A. (2017). Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Canadian Journal of Microbiology, 63(7), 583-595. https://doi.org/10.1139/cjm-2016-0740

Kouipou Toghueo, R. M., Eke, P., Zabalgogeazcoa, Í., Rodríguez Vázquez de Aldana, B., Wakam Nana, L., & Fekam Boyom, F. (2016). Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biological Control, 96, 8-20. https://doi.org/10.1016/j.biocontrol.2016.01.008

Larran, S., Mónaco, C., & Alippi, H. E. (2000). Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves. Advances in Horticultural Science, 14(4), 193-196. https://www.jstor.org/stable/42883275

Leon-Ttacca, B., Yactayo-Yataco, R. J., Astete-Farfán, A., & Mattos, L. L. (2022). Antibiosis and mycoparasitism of endophytic fungi on the causal agent of blueberry gray mold (Botrytis cinerea). Bioagro, 34(2), 209-220. http://www.doi.org/10.51372/bioagro343.1

Li, Z., Chang, P., Gao, L., & Wang, X. (2020). The endophytic fungus Albifimbria verrucaria from wild grape as an antagonist of Botrytis cinerea and other grape pathogens. Phytopathology®, 110(4), 843-850. https://doi.org/10.1094/PHYTO-09-19-0347-R

Li, Z. -J., Shen, X. -Y., & Hou, C. -L. (2016). Fungal endophytes of South China blueberry (Vaccinium dunalianum var. Urophyllum). Letters in Applied Microbiology, 63(6), 482-487. https://doi.org/10.1111/lam.12673

López-González, R. C., Gómez-Cornelio, S., De la Rosa-García, S. C., Garrido, E., Oropeza-Mariano, O., Heil, M., & Partida-Martínez, L. P. (2017). The age of lima bean leaves influences the richness and diversity of the endophytic fungal community, but not the antagonistic effect of endophytes against Colletotrichum lindemuthianum. Fungal Ecology, 26, 1-10. https://doi.org/10.1016/j.funeco.2016.11.004

Lou, J., Fu, L., Peng, Y., & Zhou, L. (2013). Metabolites from Alternaria fungi and their bioactivities. Molecules, 18(5), 5891-5935. https://doi.org/10.3390/molecules18055891

Lugtenberg, B. J. J., Caradus, J. R., & Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92(12), Article fiw194 https://doi.org/10.1093/femsec/fiw194

Musetti, R., Vecchione, A., Stringher, L., Borselli, S., Zulini, L., Marzani, C., D’Ambrosio, M., di Toppi, L. S., & Pertot, I. (2006). Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology®, 96(7), 689-698. https://doi.org/10.1094/PHYTO-96-0689

Pancher, M., Ceol, M., Corneo, P. E., Longa, C. M. O., Yousaf, S., Pertot, I., & Campisano, A. (2012). Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and Environmental Microbiology, 78(12), 4308-4317. https://doi.org/10.1128/AEM.07655-11

Reis Varanda, C. M., Oliveira, M., Materatski, P., Landum, M., Esteves Clara, M. I., & Félix, M. do R. (2016). Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biology, 120(12), 1525-1536. https://doi.org/10.1016/j.funbio.2016.08.002

Russo, M. L., Pelizza, S. A., Cabello, M. N., Stenglein, S. A., Vianna, M. F., & Scorsetti, A. C. (2016). Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Revista Argentina de Microbiología, 48(2), 154-160. https://doi.org/10.1016/j.ram.2015.11.006

Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A., & Soltani, J. (2019). Diversity and spatiotemporal distribution of fungal endophytes associated with Citrus reticulata cv. Siyahoo. Current Microbiology, 76(3), 279-289. https://doi.org/10.1007/s00284-019-01632-9

Sánchez-Fernández, E. R., Sánchez-Ortiz, L. B., Sandoval-Espinosa, M. Y. K., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García-Méndez, C. M., & Macías-Rubalcava, L. M. (2013). Hongos endófitos: Fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. Revista Especializada en Ciencias Químico-Biológicas, 16(2), 132-146. https://doi.org/10.1016/S1405-888X(13)72084-9

Shankar Mane, R., Milaap Paarakh, P., & Basapps Vedamurthy, A. (2018). Brief review on fungal endophytes. International Journal of Secondary Metabolite, 5(4), 288-303 https://doi.org/10.21448/ijsm.482798

Sharma, I., & Sharma, A. (2014). Use of Alternaria spp. as a pest control agent: A Review. World Applied Sciences Journal, 11(31), 1869-1872. h

Stranska, M., Dzuman, Z., Prusova, N., Behner, A., Kolouchova, I., Lovecka, P., Rezanka, T., Kolarik, M., & Hajslova, J. (2022). Fungal endophytes of Vitis vinifera—Plant growth promoters or potentially toxinogenic agents? Toxins, 14(2), Article 66. https://doi.org/10.3390/toxins14020066

Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. (2nd ed.). CRC PRESS.

Zhao, J. H., Zhang, Y. L., Wang, L. W., Wang, J. Y., & Zhang, C. L. (2012). Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World Journal of Microbiology and Biotechnology, 28(5), 2107-2112. https://doi.org/10.1007/s11274-012-1015-4

Published

2024-04-11

How to Cite

León-Ttacca, B., Alca-Zavala, J., Rosas-Martínez, J., Robles-Perez, E., Zamudio-Eustaquio, P., & García-Díaz, L. (2024). Endophytic fungi associated to Vitis vinifera with antibiosis capacity against Botrytis cinerea. Agronomía Mesoamericana, 56193. https://doi.org/10.15517/am.2024.56193

Issue

Section

Articles

Most read articles by the same author(s)