Climate elements and their relationship with the Guatemalan Moth Tecia solanivora (Povolný, 1973) (Lepidoptera: Gelechiidae) in potato (Solanum tuberosum L.) crop

Authors

DOI:

https://doi.org/10.15517/am.v33i3.48552

Keywords:

agroclimatic index, insect pest, tuber, integrated pest management

Abstract

Introduction. Climate variability and climate change scenarios influence the behavior of species and natural resources. The potato (Solanum tuberosum L., Solanaceae) crop produces a food of high nutritional value that is a staple in the family food basket. In Colombia, the production system is affected by pests, such as the Guatemalan potato moth caused by Tecia solanivora (Povolný), with few field studies describing its relationship with climate. Objective. To evaluate the effect of climatic elements on the adult male populations of T. solanivora in three potato crop cycles in a locality in Colombia. Materials and methods. In the municipality of Mosquera, Cundinamarca, Colombia, between November 2015 and October 2017, baited traps with sexual pheromone were located for the capture of adult Guatemalan potato moths in three potato cv Diacol capiro crop cycles, and the following were recorded: number of adults, precipitation (mm), relative humidity (%), minimum, mean, and maximum temperatures (°C), wind speed (km/h), solar brightness (h/day), agroclimatic indices of degree days (°Cd), reference evapotranspiration (mm/day), and water index (HI). Pearson and Dickey-Fuller tests, time series, and cross-correlation were performed. Results. The fluctuation of adults of T. solanivora was positively correlated with maximum temperature, degree days, and solar brightness, and a negatively correlated with precipitation (p<0.05). The maximum temperature (20 - 23 °C ±0.7 °C) presented the highest significance (p<0.05) of all the cross-correlations with Tecia solanivora, with a direct relationship when exceeding the autocorrelation coefficients, which increased the population and displacement of T. solanivora adults. The autocorrelation with precipitation (62 – 128 mm ±22 mm) showed population decrease (p<0.05). Conclusions. Climatic variables were critical limiting factors for the emergence and survival of T. solanivora.

Downloads

Download data is not yet available.

References

Allen, R. G., Smith, M., Pereira, L. S., & Perrier, A. (1994). An update for the calculation of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.

Azevedo, R., Costa Ferreira, R. N., de Azevedo, F. R., da Silva Nascimento, L., Pereira dos Santos, J. R., de Brito Ferreira, R. C. A., & de Oliveira Mesquita, F. (2020). Resposta antecipada ou atrasada em relação à chuva: Efeito da precipitação sobre uma assembleia de artrópodes em um enclave de floresta perenifólia. Research, Society and Development, 9(12), Artigo e47291210923. https://doi.org/10.33448/rsd-v9i12.10923

Barreto, N., Espitia, E., Galindo, R., Gordo, E., Cely, L., Sánchez, G., & López-Ávila, A. (2004). Fluctuación de la población de Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) en tres intervalos de altitud en Cundinamarca y Boyacá, Colombia. En A. Pollet, G. Onore, F. Chamarro, & Á. Barragán (Eds.), Memorias II Taller Internacional de Polilla Guatemalteca Tecia solanivora. Avances en investigación y manejo integrado de la polilla guatemalteca de la papa Tecia solanivora (pp. 25–43). Pontificia Universidad Católica del Ecuador. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010036182.pdf

Beasley, C. A., & Adams, C. J. (1996). Field-based, degree-day model for pink bollworm (Lepidoptera: Gelechiidae) development. Journal of Economic Entomology, 89(4), 881–890. https://doi.org/10.1093/jee/89.4.881

Bejarano, M. V., Ñustez, C. E., & Luque, J. E. (1997). Respuesta de 10 variedades de papa (Solanum tuberosum L.) y 3 híbridos interespecíficos al ataque de la polilla (Tecia solanivora Povolny), en condiciones de almacenamiento. Agronomía Colombiana, 14(2), 138–143. https://revistas.unal.edu.co/index.php/agrocol/article/view/21480/22472

Castillo Yépez, G. M. (2005). Determinación del ciclo de vida de las “polillas de la papa” Symmetrischema tanglias (gyen) y Tecia solanivora (povolny) (lepidopteros: gelechiidae), bajo condiciones controladas de laboratorio. Quito, Ecuador. 2004 [Tesis de Pregrado, Universidad Central del Ecuador]. Repositorio institucional de la Universidad Central del Ecuador. http://repositorio.iniap.gob.ec/handle/41000/93

Chen, C., Harvey, J. A., Biere, A., & Gols, R. (2019). Rain downpours affect survival and development of insect herbivores: the specter of climate change? Ecology, 100(11), Article e02819. https://doi.org/10.1002/ecy.2819

Cotes, A. M., López-Ávila, A., Bosa Ochoa, C. F., Zuluaga, M. V., Rincón, D., Valencia, E., Clavijo Mc Cormick, A., Aragón, S. M., Borrero, F., Camargo, C., Cuadros, D., Witzgall, P., Bengtsson, M., Karlsson, M., & Birgersson, G. (2012). Uso de los compuestos volátiles de la papa en el control de la Polilla guatemalteca. Corporación Colombiana de Investigación Agropecuaria. https://repository.agrosavia.co/bitstream/handle/20.500.12324/12458/44967_60390.pdf?sequence=1&isAllowed=y

Dangles, O., Carpio, C., Barragan, A. R., Zeddam, J. -L., & Silvain, J. F. (2008). Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Ecological Applications, 18(7), 1795–1809. https://doi.org/10.1890/07-1638.1

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348

Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467, 704–706. https://doi.org/10.1038/nature09407

Duraimurugan, P. (2018). Effect of weather parameters on the seasonal dynamics of tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae) in castor in Telangana State. Journal of Agrometeorology, 20(2), 139–143. https://www.agrimetassociation.org/journal/fullpage/fullpage1-1742959523.pdf

Espitia, E., Wilches, W., Barreto-Triana, N., Cely-Pardo, L., Fuentes, J. C., Herrera, C., Sánchez, G., & Diaz, M. C. (2019). Implementación del manejo integrado de la polilla guatemalteca en parcelas demostrativas en Colombia. En Comité Organizador y Científico (Ed.), Libro de resúmenes IV Taller Internacional de la Polilla Guatemalteca de la Papa, Tecia solanivora (pp. 52–55). Agrocabildo. https://www.agrocabildo.org/publica/Publicaciones/papa_709_Libro%20de%20resumenes%20del%20IV%20Taller%20Internacional%20de%20Tecia%20solanivora.pdf

Fand, B. B., Nagrare, V. S., Bal, S. K., Babu Naik, V. C., Naikwadi, B. V., Mahule, D. J., Gokte-Narkhedkar, N., & Waghmare, V. N. (2021). Degree day-based model predicts pink bollworm phenology across geographical locations of subtropics and semi-arid tropics of India. Scientific Reports, 11(1), Article 436. https://doi.org/10.1038/s41598-020-80184-6

Fand, B. B., Tonnang, H. E., Kumar, M., Kamble, A. L., & Bal, S. K. (2014). A temperature-based phenology model for predicting development, survival and population growth potential of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Protection, 55, 98–108. https://doi.org/10.1016/j.cropro.2013.10.020

Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M., & Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature, 417, 70-73. https://doi.org/10.1038/417070a

González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R. A., & Villalobos, F. (2020). Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biological Reviews, 95(3), 802–821. https://doi.org/10.1111/brv.12588

Kocmánková, E., Trnka, M., Juroch, J., Dubrovský, M., Semerádová, D., Možný, M.; Žalud, Z. (2009). Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science, 45, S48–S52. https://doi.org/10.17221/2835-PPS

Kroschel, J., Mujica, N., Okonya, J., & Alyokhin, A. (2020). Insect pests affecting potatoes in tropical, subtropical, and temperate regions. In H. Campos, & O. Ortiz (Eds.), The potato crop. Its agricultural, nutritional and social contribution to humankind (pp. 251–306). Open Access. https://doi.org/10.1007/978-3-030-28683-5_8

Kroschel, J., & Schaub, B. (2013). Biology and ecology of potato tuber moths as major pests of potato. In P. Giordanengo, C. Vincent, & A. Alyokhin (Eds.), Insect pests of potato. Global perspectives on biology and management (pp. 165–192). Academic Press. https://doi.org/10.1016/B978-0-12-386895-4.00006-5

Kwon, Y. S., Chung, N., Bae, M. J., Li, F., Chon, T. S., & Park, Y. S. (2012). Effects of meteorological factors and global warming on rice insect pests in Korea. Journal of Asia-Pacific Entomology, 15(3), 507–515. https://doi.org/10.1016/j.aspen.2012.05.004

Li, K., & Gong, Z. (2017). Feeling hot and cold: thermal sensation in Drosophila. Neuroscience Bulletin, 33(3), 317–322. https://doi.org/10.1007/s12264-016-0087-9

Ma, C. S., Ma, G., & Pincebourde, S. (2021). Survive a warming climate: insect responses to extreme high temperatures. Annual Review of Entomology, 66, 163–184. https://doi.org/10.1146/annurev-ento-041520-074454

Marco, V. (2001). Modelización de la tasa de desarrollo de insectos en función de la temperatura. Aplicación al manejo integrado de plagas mediante el método de grados-día. Boletín Sociedad Entomológica Aragonesa, 28, 147–150. http://sea-entomologia.org/PDF/BOLETIN_28/B28-038-147.pdf

Ministerio de Agricultura y Desarrollo Rural. (2021, marzo). Cadena de la papa [Diapositivas]. Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. https://bit.ly/3OhLBLV

Motalebifard, R., Najafi, N., Oustan, S., Nyshabouri, M. R., & Valizadeh, M. (2013). The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162, 31–38. https://doi.org/10.1016/j.scienta.2013.07.043

Mujica, N., Sporleder, M., Carhuapoma, P., & Kroschel, J. (2017). A temperature-dependent phenology model for Liriomyza huidobrensis (Diptera: Agromyzidae). Journal of Economic Entomology, 110(3), 1333–1344. https://doi.org/10.1093/jee/tox067

Niño, L. (2003). Antecedentes de la investigación y manejo integrado de la polilla guatemalteca Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) en Venezuela. En A. López-Avila (Ed.), Memorias. III Taller Internacional de la Polilla Guatemalteca de la papa, Tecia solanivora (pp. 107–114). Centro Internacional de la papa. https://bit.ly/3B0Gk8m

Nochai, R., & Nochai, T. (2006). Arima model for forecasting oil palm price. In I. M. I. Ahmad, & M. A. Norhashidah (Eds.), Applied mathematics: Proceedings of the 2nd IMT-GT regional conference on mathematics, statistics and applications (pp. 13–15). Universiti Sains Malaysia. https://hughchristensen.com/papers/academic_papers/ST03.pdf

Nov, A. (1995). Influencia de la temperatura sobre la biología de Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae), criadas en tubérculos de papa Solanum tuberosum L. Boletin de Entomologia Venezolana, 11(1), 49–54.

Ñústez López, C. E., Delgado Niño, M. C., Alba Chacón, A. F., Duque Puentes, L. D., Mosquera Vásquez, T. Rodríguez Molano, L. E., García Domínguez, C., Cotes Prado, A. M., Beltrán Acosta, C. R., Espitia Malagón, E., Barreto Triana, N., Cely Pardo, L., Wilches Ortiz, W., & Ospina Parra, C. E. (2020). Papa de año (Solanum tuberosum Grupo Andigenum. Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. Corredor Tecnológico Agroindustrial, CTA-2. https://repository.agrosavia.co/handle/20.500.12324/36818

Oppeltová, P., Kasal, P., Krátký, F., & Hajšlová, J. (2021). Analysis of selected water quality indicators from runoff during potato cultivation after natural precipitation. Agriculture, 11(12), Article 1220. https://doi.org/10.3390/agriculture11121220

Orlandini, S., Magarey, R. D., Woo Park, E., Sporleder, M., & Kroschel, J. (2018). Methods of agroclimatology: modeling approaches for pests and diseases. In J. Hatfield, M. V. K. Sivakumar, & J. H. Prueger (Eds.), Agroclimatology: linking agriculture to climate (pp. 453–488). Agronomy Monographs 60. Ahttps://doi.org/10.2134/agronmonogr60.2016.0027

Pearson, E. S. (1931). The test of significance for the correlation coefficient. Journal of the American Statistical Association, 26(174), 128–134. https://doi.org/10.2307/2277761

Pearson, K. (1897). Mathematical contributions to the theory of evolution, on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60(359-367), 489–498. https://doi.org/10.1098/rspl.1896.0076

Peddu, H., Fand, B. B., Sawai, H. R., & Lavhe, N. V. (2020). Estimation and validation of developmental thresholds and thermal requirements for cotton pink bollworm Pectinophora gossypiella. Crop Protection, 127, Article 104984. https://doi.org/10.1016/j.cropro.2019.104984

Peña Baracaldo, F. J., & Zenner de Polanía, I. (2015). Irrigation response of potato (Solanum tuberosum L.) var. R12 Diacol Capiro. Revista U.D.C.A Actualidad & Divulgación Científica, 18(2), 385–392. https://repository.udca.edu.co/handle/11158/1645

Pollet, A., Barragán, A., Zeddam, J. L., & Lery, X. (2003). Tecia solanivora, a serious biological invasion of potato cultures in South America. International Pest Control, 45, 139–144.

Povolný, D. (1973). Scobipalpopsis solanivora sp. n. A new pest of potato (Solanum tuberosum) from Central America. Acta Universitatis Agriculturae, 21, 133–145.

Prakash, A., Rao, J., Mukherjee, A. K., Berliner, J., Pokhare, S. S., Adak, T., Munda, S., & Shashank, P. R. (2014). Climate change: impact on crop pests. Applied Zoologists Research Association. https://bit.ly/3cgSGyJ

R core team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/index.html

Rincón, D. F., & García, J. (2007). Frecuencia de cópula de la polilla guatemalteca de la papa Tecia solanivora (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 33(2), 133–140. http://hdl.handle.net/20.500.12324/1010

Rodríguez, C., Murillo, R., & Lépiz, C. (1988). Fluctuación de las capturas de las polillas de la papa Scrobipalpopsis solanivora Povolny y Phthorimaea operculella Zeller (Lepidoptera gelechiidae) en Cartago, Costa Rica. Revista Manejo Integrado de Plagas y Agroecología, 9, 12–21. https://repositorio.catie.ac.cr/handle/11554/6327

Rodríguez-Pérez, L. (2010). Ecofisiología del cultivo de la papa (Solanum tuberosum L.). Revista Colombiana de Ciencias Hortícolas, 4(1), 97–108. https://doi.org/10.17584/rcch.2010v4i1.1229

Rodríguez-Roa, A., Arce-Barboza, B., Boshell-Villamarin, F., & Barreto-Triana, N. (2019). Effect of climate variability on Collaria scenica (Hemiptera: Miridae) on the Bogotá plateau. Agronomía Colombiana, 37(1), 47–61. https://doi.org/10.15446/agron.colomb.v37n1.75954

Rodríguez Roa, A. O. (2011). Desarrollo de un sistema de alertas agroclimáticas tempranas para la chinche de los pastos, Collaria scenica, en la sabana de Bogotá [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional de la Universidad Nacional de Colombia. https://bit.ly/3yOofaW

Rymuza, K., Radzka, E., & Lenartowicz, T. (2015). Effect of weather conditions on early potato yields in east-central Poland. Communications in Biometry and Crop Science, 10(2), 65–72.

Salazar-Blanco, J. D., Cadet-Piedra, E., & González-Fuentes, F. (2020). Monitoreo de Spodoptera spp. en caña de azúcar: uso de trampas con feromonas sexuales. Agronomía Mesoamericana, 31(2), 445–459. https://doi.org/10.15517/am.v31i2.39046

Schaub, B., Carhuapoma, P., & Kroschel, J. (2016). Guatemalan potato tuber moth, Tecia solanivora (Povolny 1973). In J. Kroschel, N. Mujica, P. Carhuapoma, & M. Sporleder (Eds.), Pest distribution and risk atlas for Africa. Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates (pp. 24–38). International Potato Center. https://doi.org/10.4160/9789290604761

Shi, P. J., Fan, M. L., & Reddy, G. V. (2017). Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (III) Phenological applications. Annals of the Entomological Society of America, 110(6), 558–564. https://doi.org/10.1093/aesa/sax063

Shrestha, S. (2019). Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3(12), 74–80. https://doi.org/10.31080/ASAG.2019.03.0727

Skenderasi, B., Mero, G., Karapanci, N., & Shahini, S. 2021. Study of potato tuber moth biology (Phthorimaea operculella), in the vegetation period, in korca region. Journal of the Austrian Society of Agricultural Economics, 17(9), 693–699. https://bit.ly/3PlCtXY

Skendžić, S., Zovko, M., Pajač Živković, I., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), Article 440. https://doi.org/10.3390/insects12050440

Skourti, A., Kavallieratos, N. G., & Papanikolaou, N. E. (2019). Laboratory evaluation of development and survival of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) under constant temperatures. Journal of Stored Products Research, 83, 305–310. https://doi.org/10.1016/j.jspr.2019.07.009

Sporleder, M., Kroschel, J., Gutierrez Quispe, M. R., & Lagnaoui, A. (2004). A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae). Environmental Entomology, 33(3), 477–486. https://doi.org/10.1603/0046-225X-33.3.477

Sporleder, M., Schaub, B., Aldana, G., & Kroschel, J. (2017). Temperature-dependent phenology and growth potential of the Andean potato tuber moth, Symmetrischema tangolias (Gyen) (Lep., Gelechiidae). Journal of Applied Entomology, 141, 202–218. https://doi.org/10.1111/jen.12321

Sporleder, M., Tonnang, H. E. Z., Carhuapoma, P., Gonzales, J. C., Juarez, H., & Kroschel, J. (2013). Insect Life Cycle Modeling (ILCYM) software a new tool for regional and global insect pest risk assessments under current and future climate change scenarios. In J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 412–427). CABI. https://doi.org/10.1079/9781845938291.0412

Sun, Y., Yan, F., Cui, X., & Liu, F. (2014). Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology, 171(14), 1248–1255. https://doi.org/10.1016/j.jplph.2014.06.002

Tustin, A. (1947). A method of analysing the behaviour of linear systems in terms of time series. Journal of the Institution of Electrical Engineers-Part IIA: Automatic Regulators and Servo Mechanisms, 94(1), 130–142. https://doi.org/10.1049/ji-2a.1947.0020

Wagg, C., Hann, S., Kupriyanovich, Y., & Li, S. (2021). Timing of short period water stress determines potato plant growth, yield and tuber quality. Agricultural Water Management, 247, Article 106731. https://doi.org/10.1016/j.agwat.2020.106731

Wallis, J. R., & Matalas, N. C. (1971). Correlogram analysis revisited. Water Resources Research, 7(6), 1448–1459. https://doi.org/10.1029/WR007i006p01448

Wilches Ortiz, W. A. (2019). Manejo integrado de plagas y enfermedades en el cultivo de papa (Solanum tuberosum L.) para una mayor seguridad alimentaria de pequeños productores en el Altiplano Cundiboyacense, Colombia [Tesis de Maestría, Universidad Abierta y a Distancia de México]. Repositorio institucional de la Universidad Abierta y a Distancia de México. http://www.repositorio.unadmexico.mx:8080/xmlui/handle/123456789/393

Published

2022-07-28

How to Cite

Wilches-Ortiz, W. A., Espitia-Malagón, E. M., & Vargas-Diaz, R. E. (2022). Climate elements and their relationship with the Guatemalan Moth Tecia solanivora (Povolný, 1973) (Lepidoptera: Gelechiidae) in potato (Solanum tuberosum L.) crop. Agronomía Mesoamericana, 33(3), 48552. https://doi.org/10.15517/am.v33i3.48552