Composting for the reduction of bird droppings (Gallus gallus domesticus)




poultry sector, chicken manure, composting, manures


Introduction. The growth of the population and the consumption of protein sources such as chicken meat, have maximized the generation of poultry waste (chicken manure), this leads to the development of efficient management alternatives for the conversion of this waste into by-products such as organic fertilizers. Numerous investigations conclude the remarkable effect of compost obtained from poultry waste on the development and growth of crops, which provide high content of essential nutrients as an amendment in agroecological agriculture, within the circular economy and the sustainable development of production. Objective. To carry out a review on the management plans of waste from the poultry sector through composting for use in agriculture in the region of Cordoba Veracruz Mexico. Development. The study was carried out between January and June 2020, through an exhaustive bibliographic search and the analysis of local experiences in the production of organic fertilizers with farmers. In this review and with the field work, the results established that in the region it is possible to obtain various types of compost with the incorporation of poultry waste, and the technologies of compost, vermicompost, and bocashi production individually or in a mixture with other regional by-products such as those derived from the sugar industry, coffee, livestock, etc. Nutrients such as nitrogen of 2.08-2.34 %, phosphorus 4.01-4.27 %, potassium 2.37-4.56 %, calcium 10.36-12.93, and magnesium 0.90-1.16 % are obtained and available for use. Conclusion. Poultry by-products have a great potential to generate reutilization alternatives through rural application technologies without significant investment and waste management strategies.


Download data is not yet available.


Alcántar, G. G., & Sandoval, V. M. (1999). Manual de Análisis Químico de Tejido Vegetal. Guía de Muestreo, Preparación Análisis e Interpretación (Publicación especial número 10). Sociedad Mexicana de la Ciencia del Suelo, A.C.

Alvarez-Vera, M., Largo, A., Iglesias-Abad, S., & Castillo, J. (2019). Calidad de compost obtenido a partir de estiércol de gallina, con aplicación de microorganismos benéficos. Scientia Agropecuaria, 10(3), 353–361.

Ashworth, A. J., Chastain, J. P., & Moore Jr, P. A. (2020). Nutrient characteristics of poultry manure and litter. In H. M. Waldrip, P. H. Pagliari, & Z. He (Eds.), Animal Manure: Production, Characteristics, Environmental Concerns, and Management (Vol. 67, pp. 63–87). ASA Special Publications.

Asses, N., Farhat, W., Hamdi, M., & Bouallagui, H. (2019). Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Safety and Environmental Protection, 124, 128–136.

Balón, A. D. L. C., Calderón, J., Ortiz, A. M. A., Cobeña, H., & Mendoza, M. (2019). Bioestabilización de excretas avícolas mediante microorganismos eficientes para el control de la contaminación ambiental. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología, 4(1), 32–39.

Bayrakdar, A., Molaey, R., Sürmeli, R. Ö., Sahinkaya, E., & Çalli, B. (2017). Biogas production from chicken manure: Co-digestion with spent poppy straw. International Biodeterioration and Biodegradation, 119, 205–210.

Billen, P., Costa, J., Van der Aa, L., Van Caneghem, J., & Vandecasteele, C. (2015). Electricity from poultry manure: a cleaner alternative to direct land application. Journal of Cleaner Production, 96, 467–475.

Buratti, C., Barbanera, M., Testarmata, F., & Fantozzi, F. (2015). Life cycle assessment of organic waste management strategies: An Italian case study. Journal of Cleaner Production, 89, 125–136.

Brandelli, A., Sala, L., & Kalil, S. J. (2015). Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International, 73, 3–12.

Brunton, E. W. (2012). Animal waste management an industry perspective. American Society of Agricultural.

Casas-Rodríguez, S., & Guerra-Casas, L. D. (2020). La gallinaza, efecto en el medio ambiente y posibilidades de reutilización. Revista de Producción Animal, 32(3), 87–102.

Castro, B. J., Chirinos, P. D., & Lara, S. P. (2019). Evaluación del compost de guano de pollo en el rendimiento y calidad nutricional de la alfalfa en la sierra central del Perú. Revista de Investigación Veterinaria Perú, 30(4), 1562–1568.

Chen, H., Awasthi, S. K., Liu, T., Duan, Y., Ren, X., Zhang, Z., Pandey, A., & Awasthi, M. K. (2020). Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials, 389, 121908.

Chen, H. Y., Awasthi, M. K., Liu, T., Zhao, J. C., Ren, X. N., Wang, M. J., Duan, Y. M., Awasthi, S. K., & Zhang, Z. Q., (2018). Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresource Technology, 266, 82–88.

Chojnacka, K., Moustakas, K., & Witek-Krowiak, A. (2020). Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology, 295, Article 122223.

Consejo Mexicano de la Carne. (2019). Compendio estadístico 2019.

da Silva Sunada, N., Amorim Orrico, A. C., Previdelli Orrico Junior, M. A., Ribeiro Centurion, S., Borges de Morais Oliveira, A., Mendes Fernandes, A. R., de Lucas Junior, J., & de Oliveira Seno, L. (2014). Compostagem de resíduo sólido de abatedouro avícola. Ciência Rural, 45(1), 178–183.

Debernardi-Vazquez, T. J., Aguilar-Rivera, N., & Nuñez-Pastrana, R. (2020). Composting of byproducts from the orange (Citrus sinensis (L.) Osbeck) and sugarcane (Saccharum spp. hybrids) agroindustries. Ingeniería e Investigación, 40(3), 81–88.

Delgado Arroyo, M. M., Mendoza López, K. L., González, M. I., Tadeo Lluch, J. L., & Martín Sánchez, J. V. (2019). Evaluación del proceso de compostaje de residuos avícolas empleando diferentes mezclas de sustratos. Revista Internacional de Contaminación Ambiental, 35(4), 965–977.

Delgado Arroyo, M. M., Miralles de Imperial Hornedo, R., Masaguer Rodriguez, R. A., & Martín Sánchez, J. V. (2016). Estudio de turbas y residuos avícolas procedentes de pollo de engorde como componente de sustratos de cultivo. Revista Internacional de Contaminación Ambiental, 32(4), 455–462.

Deng, W., Zhang, A., Chen, S., He, X., Jin, L., Yu, Yang, S., Li, B., Fan, L., Ji, L., & Pan, X. (2020). Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management, 257, Article 109980.

Djekic, I., & Tomasevic, I. (2019). Environmental Indicators in the Meat Chain. In S. S. Muthu (Ed.), Quantification of Sustainability Indicators in the Food Sector (pp. 55–82). Springer.

Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland–Current state and future perspectives. Journal of Environmental Management, 264, Article 110327.

Duarte da Silva Lima, N., de Alencar Nääs, I., Garófallo Garcia, R., & Jorge de Moura, D. (2019). Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. Journal of Cleaner Production, 237, Article 117752.

El-Daka, M. A., Ramzy, R. R., Plath, M., & Ji, H. (2021). Evaluating the impact of bird manure vs. mammal manure on Hermetia illucens larvae. Journal of Cleaner Production, 278, Article 123570.

Esteban, J., & Ladero, M. (2018). Food waste as a source of value-added chemicals and materials: a biorefinery perspective. International Journal of Food Science and Technology, 53(5), 1095–1108.

Fang, H., Han, L., Zhang, H, Long, Z.; Cai, L., & Yu, Y. (2018). Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of Hazardous Materials, 357(5), 53–62.

Fernández-Nieto, A. S., & Betancourt-González, A. R. (2018). Destino sostenible de los residuos generados en las plantas de beneficio avícola. Revista de Investigación, Administración e Ingeniería, 6(1), 13–24.

Florida N., Reategui F., & Pocomucha V. (2018). Caracterización de composta a base de plumas de pollo (Gallus gallus domesticus) y otros insumos. Investigación y Amazonía, 6(2), 1–5.

Freitag, C., Michael, G. B., Li, J., Kadlec, K., Wang, Y., Hassel, M., & Schwarz, S. (2018). Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Veterinary Microbiology, 219, 63–69.

Gómez-Brandón, M.; Lazcano, C., & Domínguez, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70(3), 436–444.

Hernández-Rodríguez, O. A., Hernández-Tecorral, A., Arras-Vota, A. M., & Ojeda-Barrios, D. (2013). Calidad nutrimental de cuatro abonos orgánicos producidos a partir de residuos vegetales y pecuarios. Terra Latinoamericana, 31(1), 35–46.

Herrera, J., Rojas, J. F., & Bolaños, A. (2013). Diagnóstico preliminar de los niveles de emisión de amoníaco y sulfuro de hidrógeno en distintas modalidades de producción en granjas avícolas en Costa Rica. Revista de Ciencias Ambientales, 46(2), 15–26.

Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., & Butterbach-Bahl, K. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), 452–461.

Holloway, J. W., & Wu, J. (2019). The consumer and extrinsic meat. In J. W. Holloway, & J. Wu (Eds.), Red meat science and production (Vol. 1, pp. 161–166). Springer.

Hoover, N. L., Law, J. Y., Long, L. A. M., Kanwar, R. S., & Soupir, M. L. (2019). Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. Journal of Environmental Management, 252, Article 109582.

Huang, J., Yu, Z., Gao, H., Yan, X., Chang, J., & Wang, C. (2017). Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices. PLoS ONE, 12(6), Article e0178110.

Hubbard, L. E., Givens, C. E., Griffin, D. W., Iwanowicz, L. R., Meyer, M. T., & Kolpin, D. W. (2020). Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. Science of The Total Environment, 735, Article 139459.

Hussein, M. S., Burra, K. G., Amano, R. S., & Gupta, A. K. (2017). Temperature and gasifying media effects on chicken manure pyrolysis and gasification. Fuel, 202, 36–45.

Kalhor, T., Rajabipour, A., Akram, A., & Sharifi, M. (2016). Environmental impact assessment of chicken meat production using life cycle assessment. Information Processing in Agriculture, 3(4), 262–271.

Kanani, F., Heidari, M. D., Gilroyed, B. H., & Pelletier, N. (2020). Waste valorization technology options for the egg and broiler industries: A review and recommendations. Journal of Cleaner Production, 262, Article 121129.

Kopeć, M., Gondek, K., Mierzwa-Hersztek, M., & Antonkiewicz, J. (2018). Factors influencing chemical quality of composted poultry waste. Saudi Journal of Biological Sciences, 25(8), 1678–1686.

Lakshmi, V. V., Aruna Devi, D., & Jhansi Rani, K. P. (2020). Wealth from poultry waste. In S. K. Ghosh, C. Bhattacharya, S. V. Satyanarayana, & S. Varadarajan (Eds.), Waste management as economic industry towards circular economy (pp. 135–144). Springer.

Li, M. X., He, X. S., Tang, J., Li, X., Zhao, R., Tao, Y. Q., & Qiu, Z. P. (2021). Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere, 264(Part 2), Article 128549.

Li, Z., Lu, H., Ren, L., & He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), 1247–1257.

Ma, J., & You, F. (2019). Superstructure optimization of thermal conversion based poultry litter valorization process. Journal of Cleaner Production, 228, 1111–1121.

MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from pig and chicken supply chains–A global life cycle assessment. Food and Agriculture Organization of the United Nations.

Maldaner, L., Wagner-Riddle, C., VanderZaag, A. C., Gordon, R., & Duke, C. (2018). Methane emissions from storage of digestate at a dairy manure biogas facility. Agricultural and Forest Meteorology, 258, 96–107.

Malovanyy, M., Kanda, M., Paraniak, R., Odnorih, Z., & Tymchuk, I. (2021). The strategy of environmental danger minimization from poultry farms waste. Journal of Ecological Engineering, 22(5), 229–237.

Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80, 756–764.

Molaey, R., Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2018). Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass and Bioenergy, 108, 439–446.

Mottet, A., & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World’s Poultry Science Journal, 73(2), 245–256.

Nahm, K. H. (2003). Evaluation of the nitrogen content in poultry manure. World’s Poultry Science Journal, 59(1), 77–88.

Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352–370.

Neill, A. J., Tetzlaff, D., Strachang, N. J. C., Houngh, L. R., Avery, L. M., Watson, H., & Soulsby, C. (2018). Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment. Science of the Total Environment, 612, 840–852.

Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37(6), 760–770.

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2013). Poultry Development Review.

Organización para la Cooperación y el Desarrollo Económicos. (2010). Resource Productivity in the G8 and the OECD. A Report in the Framework of the Kobe 3R Action Plan.

Organización para la Cooperación y el Desarrollo Económicos, & Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016). Perspectivas agrícolas 2016-2025.

Ozdemir, S., & Yetilmezsoy, K. (2020). A mini literature review on sustainable management of poultry abattoir wastes. Journal of Material Cycles and Waste Management, 22, 11–21.

Palomino, L., Vega, R., Lara, C., Gomero, L., & García, S. (2019). Evaluación de cinco residuos avícolas como fuentes de nitrógeno mineral disponible. Idesia (Arica), 37(3), 121–129.

Pinos-Rodríguez, J. M., García-López, J. C., Peña-Avelino, L. Y., Rendón-Huerta, J. A., González-González, C., & Tristán-Patiño, F. (2012). Impactos y regulaciones ambientales del estiércol generado por los sistemas ganaderos de algunos países de América. Agrociencia, 46(4), 359–370.

Ravindran, B., Mupambwa, H. A., Silwana, S., & Mnkeni, P. N. (2017). Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon, 3(12), Article e00493.

Rayne, N., & Aula, L. (2020). Livestock manure and the impacts on soil health: A review. Soil Systems, 4(4), Article 64.

Riaz, L., Wang, Q., Yang, Q., Li, X., & Yuan, W. (2020). Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Science of the Total Environment, 718, Article 137414.

Rico-Contreras, J. O., Aguilar-Lasserre, A. A., Méndez-Contreras, J. M., Cid-Chama, G., & Alor-Hernández, G. (2014). Predicción del contenido de humedad en la pollinaza para estimar la producción de bioenergía a través de una red neuronal artificial. Revista Mexicana de Ingeniería Química, 13(3), 933–955.

Rico-Contreras, J. O., Aguilar-Lasserre, A. A., Méndez-Contreras, J. M., López-Andrés, J. J., & Cid-Chama, G. (2017). Moisture content prediction in poultry litter using artificial intelligence techniques and Monte Carlo simulation to determine the economic yield from energy use. Journal of Environmental Management, 202(Part 1), 254–267.

Rocchi, L., Paolotti, L., Rosati, A., Boggia, A., & Castellini, C. (2019). Assessing the sustainability of different poultry production systems: A multicriteria approach. Journal of Cleaner Production, 211, 103–114.

Román, P., Martínez, M., & Pantoja, A. (2013). Manual de compostaje del agricultor, Experiencias en América Latina. Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Qian, Y., Song, K., Hu, T., & Ying, T. (2018). Environmental status of livestock and poultry sectors in China under current transformation stage. Science of the Total Environment, 622-623, 702–709.

Seidavi, A. R., Zaker-Esteghamati, H., & Scanes, C. G. (2019). Present and potential impacts of waste from poultry production on the environment. World’s Poultry Science Journal, 75(1), 29–42.

Senthilkumar, K., Kumar, M. N., Devi, V. C., Saravanan, K., & Easwaramoorthi, S. (2020). Agro-industrial waste valorization to energy and value added products for environmental sustainability. In R. Praveen Kumar, B. Bhararhiraja, R. Kataki, & V. Moholkar (Eds.), Biomass valorization to bioenergy (pp. 1–9). Springer.

Skunca, D., Tomasevic, I., Nastasijevic, I., Tomovic, V., & Djekic, I. (2018). Life cycle assessment of the chicken meat chain. Journal of Cleaner Production, 184, 440–450.

Sistema de Información Agroalimentaria y Pesquera. (2020). Producción Ganadera.

Sistema de Información Agroalimentaria y Pesquera. (2019). Resumen Nacional.

Stiborova, H., Kronusova, O., Kastanek, P., Brazdova, L., Lovecka, P., Jiru, M., Belkova, B., Poustka, J., Stranska, M., Hajslova, J., & Demnerova, K. (2020). Waste products from the poultry industry: a source of high-value dietary supplements. Journal of Chemical Technology and Biotechnology, 95(4), 985–992.

Swain, M., Blomqvist, L., McNamara, J., & Ripple, W. J. (2018). Reducing the environmental impact of global diets. Science of the Total Environment, 610, 1207–1209.

Unión Nacional de Avicultores. (2019). Indicadores económicos.

United States Department of Agriculture. (2020). Poultry & eggs.

Velasco-Velasco, J. (2016). Buenas prácticas de manejo y emisiones de amoniaco en explotaciones avícolas. Agroproductividad, 9(8), 38–44.

Tańczuk, M., Junga, R., Werle, S., Chabiński, M., & Ziółkowski, Ł. (2019). Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renewable Energy, 136, 1055–1063.

Tiquia, S. M., & Tam, F. N. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology, 65(1–2), 43–49.

Thomas, C., Idler, C., Ammon, C., & Amon, T. (2020). Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting. Waste Management, 105, 110–118.

Toledo, M., Gutiérrez, M. C., Peña, A., Siles, J. A., & Martín, M. A. (2020). Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process Safety and Environmental Protection, 139, 362–370.

Topal, H., Taner, T., Altinsoy, Y., & Amirabedin, E. (2018). Application of trigeneration with direct co-combustion of poultry waste and coal: A case study in the poultry industry from Turkey. Thermal Science, 22(6 Part B), 3073–3082.

Wang, L. Z., Xue, B., & Yan, T. (2017). Greenhouse gas emissions from pig and poultry production sectors in China from 1960 to 2010. Journal of Integrative Agriculture, 16(1), 221–228.

Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J., & Dong, R. (2016). Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control. Bioresource Technology, 205, 75–81.

Yu, Y., Chen, L., Jia, X., & Chen, J. (2019a). High temperatures can effectively degrade residual tetracyclines in chicken manure through composting. Journal of Hazardous Materials, 380, Article 120862.

Yu, H., Xie, B., Khan, R., & Shen, G. (2019b). The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresource Technology, 271, 228–235.

Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W., & Karmegam, N. (2020). Centrality of cattle solid wastes in vermicomposting technology–A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environmental Pollution, 268(Part A), Article 115688.

Zhang, H., Zang, Q., Song, J., Zang, Z., Chen, S., Long, Z., Wang, M., Yu, Y., & Fang, H. (2020). Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Journal of Hazardous Materials, 396, Article 122618.



How to Cite

Rosas-Martínez, V., & Aguilar-Rivera, N. (2021). Composting for the reduction of bird droppings (Gallus gallus domesticus). Agronomía Mesoamericana, 33(1), 44815.