Productive behavior and phenotypic stability of Hordeum vulgare L. in Colombia

Authors

DOI:

https://doi.org/10.15517/am.v33i1.44392

Keywords:

adaptation, Cundiboyacense highlands, malting barley, grain yield

Abstract

Introduction. The incorporation of 40 thousand hectares of barley (Hordeum vulgare L.) for the beer industry in Colombia, with a projected production of 80 thousand t yr-1 in the period 2016 to 2026, will allow to reduce imports by 60 %. However, meeting this goal requires high-yielding, high-quality barley varieties. Objective. To identify a barley variety with stable grain yield and higher than 2.6 t ha-1 associated with tolerance to tipping, lower severity to yellow rust on the leaf and ear, and physical quality of the grain for the brewing industry. Materials and methods. Between 2016 and 2017, an agronomic evaluation trial was carried out in the Colombian Andean region, in a randomized complete block design, with eight two-row barley varieties introduced to Colombia. The physiological maturity, tipping, severity to Puccinia striiformis f. sp hordei in the leaf and ear, grain yield, and hectoliter weight were determined. Results. The Madi and S5 varieties with grain yields of 2.89 and 2.61 t ha-1, respectively, were 24 and 16 % higher than Metcalfe and 19 and 11 % higher than Maltera 5. Both varieties showed broad phenotypic stability, tolerance to tipping, lower severity of leaf and ear rust, and a hectoliter weight suitable for the brewing industry. Conclusion. The production characteristics, phenotypic stability, and physical quality of the grain of Madi and S5 varieties make them commercial candidates for the brewing industry and for recommendation in the Cundiboyacense highlands of Colombia, after validation with a semi-commercial trial.

Downloads

Download data is not yet available.

References

Abeledo, L. G., Calderini, D. F., & Slafer, G. A. (2003). Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944-1998). Euphytica, 130, 325–334. https://doi.org/10.1023/A:1023089421426

Abeledo, L. G., Serrago, R. A., de San Celedonio, R., Lo Valvo, P. J., & Miralle, D. J. (2018). Limitantes al rendimiento en trigo y cebada. Agronomía y Ambiente, 38(1), 71–84.

Al-Ghzawi, A. K., Al-Ajlouni, Z. I., Al Sane, K. O., Bsoul, E., Musallam, I., Khalaf, Y. B., Al-Hajaj, N., Al-Tawaha, A. R., Aldwairi, Y., & Al-Saqqar, H. (2019). Yield stability and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Research on Crops, 20(1), 10–18. https://doi.org/10.31830/2348-7542.2019.002

Andrejčíková, M., Macák, M., & Habán, M. (2016). Yield potential of spring malting barley (Hordeum vulgare L.) varieties in the growing conditions of south-western Slovakia. Journal Center European Agricultural, 17(4), 932–940. https://doi.org/10.5513/JCEA01/17.4.1793

Burbano-Figueroa, O. (2020). Resistencia de plantas a patógenos: una revisión sobre los conceptos de resistencia vertical y horizontal. Revista Argentina de Microbiología, 52(3), 245–255. https://doi.org/10.1016/j.ram.2020.04.006

Cairns, J. E., & Prasanna, B. M. (2018). Developing and deploying climate-resilient maize varieties in the developing world. Current Opinion in Plant Biology, 45, 226–230. https://doi.org/10.1016/j.pbi.2018.05.004

Crossa, J., Cornelius, P., & Yan, W. (2002). Biplots of linear-bilinear models for studying crossover genotype environment interaction. Crop. Science, 42, 619–633. https://doi.org/10.2135/cropsci2002.0619

Figueroa, M., Hammond-Kosack, K. E., & Solomon, P.S. (2018). A review of wheat diseases- a field perspective. Molecular Plant Pathology, 19(6), 1523–1536. https://doi.org/10.1111/mpp.12618

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science, 6(9), Article 978. https://doi.org/10.3389/fpls.2015.00978

Gabriel, K. (1971). The biplot graphic of matrices with application to principal component analysis. Biometrics, 58, 453–467. https://doi.org/10.2307/2334381

García, C. Y., Hernández, A., Garay, A., Ortega, M. E., Castañeda, C., Bárcena., R., Zaragoza, J. L., & Osorio, G. (2017). Análisis del crecimiento de tres líneas de cebada para producción de forraje, en el valle de México. Revista de la Facultad de Ciencias Agrarias UNCUYO, 49(2), 79–92.

Haas, M., Schreiber, M., & Mascher, M. (2019). Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. Journal of Integrative Plant Biology, 61(3),204-225. https://doi.org/10.1111/jipb.12737

Hernandez, J., Meints, B., & Hayes., P. (2020). Introgression breeding in barley: Perspectives and case studies. Frontiers in Plant Science, 11, Article 761. https://doi.org/10.3389/fpls.2020.00761

Instituto de Hidrología, Meteorología y Estudios Ambientales. (2017). Clasificaciones climáticas Colombia. http://www.ideam.gov.co/documents/21021/21789/climas+%5BModo+de+compatibilidad%5D.pdf/d8c85704-a07a-4290-ba65-f2042ce99ff9

Instituto Colombiano Agropecuario. (2020). Resolución No. 067516 del 11 de mayo de 2020: “Por medio de la cual se establecen los requisitos para la inscripción de los cultivares en el Registro Nacional de Cultivares Comerciales y se dictan otras disposiciones”. https://www.ica.gov.co/getattachment/6b7dbbd1-ff9b-4eea-a936-fe57f421ea98/2020R67516.aspx

Laidig, F., Piepho, H. P., Rentel, D., Drobek, T., & Meyer, U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theoretical and Applied Genetics, 130, 2411–2429. https://doi.org/10.1007/s00122-017-2967-4

Llacsa, J., Gamarra, J. A., Gómez, C. A., Martínez, A., Gómez, L. R., & Viera, M. A. (2020). Evaluación de genotipos promisorios de cebada (Hordeum vulgare L.) en los Andes centrales de Perú. Revista de Investigación Veterinaria del Perú, 31(2), Artículo e17856 https://doi.org/10.15381/rivep.v31i2.17856

Martins, J., & Juliatti, F. (2012). Adaptability and stability advances lines of semi early cycle for rust resistance. Crop Breeding and Applied Biotechnology, 12(1), 43–51. https://doi.org/10.1590/S1984-70332012000100006

Mohammadi, R., Roostaei, M., Ansari, Y., Aghaee, M., & Amri, A. (2010). Relationships of phenotypic stability measures for genotypes of three cereal crops. Canadian Journal of Plant Science, 90, 819–830. https://doi.org/10.4141/CJPS09102

Molero, G., Joynson, R., Pinera-Chavez, F. J., Gardiner, L. J., Rivera-Amado, C., Hall, A., & Reynols, M. P. (2019). Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnology Journal, 17, 1276–1288. https://doi.org/10.1111/pbi.13052

Parlevliet, J. E., & Zadoks, J. C. (1977). The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica, 26, 5–21. https://doi.org/10.1007/BF00032062

Pecio, A., & Wach. D. (2015). Grain yield and yield components of spring barley genotypes as the indicators of their tolerance to temporal drought stress. Polish Journal of Agronomy, 21, 19–27.

Peterson, R.F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26, 496–500. https://doi.org/10.1139/cjr48c-033

Ramos, A. (2017). Identificación de suelos del orden Inceptisol. Revista Logos Ciencia y Tecnología, 8(2), 170–181. http://doi.org/10.22335/rlct.v8i2.304

Riggs, T. J., Start, N. D., & Armstrong, K. W. (1980). Genotype × environment interaction amongst spring barley lines grown at sites in the northern and southern hemispheres. Euphytica, 29, 357–368. https://doi.org/10.1007/BF00025134

Rodrigues, O., Minella, E., & Costenaro, E. (2020). Genetic improvement of barley (Hordeum vulgare, L.) in Brazil: Yield increase and associated Traits. Agricultural Sciences, 11, 425–438. https://doi.org/10.4236/as.2020.114025

Sanchez-Bragado, R., Vicente, R., Molero, G., Serret, M. D., Maydup, M. L., & Araus, J. L. (2020). New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Current opinión in Plant Biology, 56, 223-234. https://doi.org/10.1016/j.pbi.202.01.001

Sato, K. (2020). History and future perspectives of barley genomics. DNA Research, 27(4), Article 23. https://doi.org/10.1093/dnares/dsaa023

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591

Statistical Analysis Systems Institute. (2016). The SAS system for Windows (Release 9.4.). SAS Institute Inc.

Stubbs, R. W. (1977). Observations on horizontal resistance to yellow rust (Puccinia striiformis f.sp. tritici). Cereal Rusts Bulletins, 5, 27-32.

Vanegas, H., Sierra, H., Duarte, C., Vargas, H., & Mantilla, H. (2018). Coyuntura cerealista y de leguminosas. El cerealista, 126(59), 43–47.

Velasco-Laiton, Y., Sana-Pulido, W., & Morillo-Coronado, A. (2020). Caracterización agromorfológica de cebada (Hordeum vulgare L.) en el Municipio de Chivata Boyacá, Colombia. Revista Biotecnología en el Sector Agropecuario y Agroindustrial, 18(2), 103–117. https://doi.org/10.18684/BSAA(18)103-116

Verma, A, Singh, J., Kumar, V., Kharab, A. S., & Singh, G. P. (2017). Rank based stability measures to select stable and adapted dual purpose barley (Hordeum vulgare L.) genotypes. Journal of Experimental Biology and Agricultural Sciences, 5(4), 456–462. https://doi.org/10.18006/2017.5(4).456.462

Zadoks, J. C., Chang, T. T., & Konza, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Published

2021-11-25

How to Cite

Campuzano-Duque, L. F., Avendaño-Avendaño, D. F., & Luque-Sanabria, N. Y. (2021). Productive behavior and phenotypic stability of Hordeum vulgare L. in Colombia. Agronomía Mesoamericana, 33(1), 44392. https://doi.org/10.15517/am.v33i1.44392