High population density in arracacha (Arracacia xanthorrhiza Bancroft) increase radiation interception, yield, and profitability





plant density, leaf area index, planting systems, intraspecific competition, optimization methods


Introduction. Arracacha (Arracacia xanthorrhiza Bancroft) a promising crop due to its nutritional and gastronomic relevance. Population density is an agronomic practice that increases water and radiation use efficiencies, maximizes the yield, and crop profitability. However, the selection of the optimal population density based on physiological, agronomic, and economic criteria for arracacha has not been studied. Objective. To describe the effect of different population densities on the physiology, yield, and profitability of arracacha. Materials and methods. The experiment was conducted in Cajamarca, Colombia in 2019. There, the soil water potential, relative chlorophyll content, photosynthesis, stomatal conductance, water use efficiency, leaf temperature depression, photosynthetic reflectance index, leaf area index, the fraction of light interception, light extinction coefficient, cracking index, yield, and profitability were evaluated. Results. The results showed that high population densities did not generate water deficit because there were no significant differences for the soil water potential, leaf temperature depression, and photosynthetic reflectance index. Furthermore, no nutritional deficiencies were evidenced because the relative chlorophyll content (<32 SPAD) was higher at the critical level. Due to this, no limitations were observed in leaf gas exchange processes. However, the densities of 25,000 and 30,000 plants ha-1 showed a higher fraction of light interception due to the increase in the leaf area index; this allowed to obtain a higher yield at these densities. Conclusion. The maximum yield (41.96 t ha-1) and profitability (US$ 15,333.06 ha-1) were reached with a population density of 22,222 plants ha-1.


Download data is not yet available.


Alvarado, A., & Ochoa, L. (2010). Tecnologías locales de producción de arracacha (Arracacia xanthorrhiza Bancroft) en el municipio de Boyacá, departamento de Boyacá. Revista U.D.C.A. Actualidad & Divulgación Científica, 13(1),125–133. https://doi.org/10.31910/rudca.v13.n1.2010.716

Al-Naggar, A. M., Shabana, R. A., Atta, M. M., & Al-Khalil, T. H. (2015). Maize response to elevated plant density combined with lowered N-fertilizer rate is genotype-dependent. The Crop Journal, 3(2), 96–109. https://doi.org/10.1016/j.cj.2015.01.002

Bänziger, M., Edmeades, G. O., & Lafitte, H. R. (1999). Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Science, 39(4),1035–1040. https://doi.org/10.2135/cropsci1999.0011183X003900040012x

Bermúdez-Florez, L. N., Cartagena-Valenzuela, J. R., & Ramírez-Builes, V.H. (2018). Soil humidity and evapotranspiration under three coffee (Coffea arabica L.) planting densities at Naranjal experimental station (Chinchiná, Caldas, Colombia). Acta Agronómica, 67(3),402-413. https://doi.org/10.15446/acag.v67n3.67377

Biju, S., Fuentes, S., & Gupta, D. (2018). The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. Plant Physiology and Biochemistry, 127,11–24. https://doi.org/10.1016/j.plaphy.2018.03.005

Bréda, N. J. (2008). Leaf area index. In S. E. Jørgensen, & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 2148–2154). Academic Press. https://doi.org/10.1016/B978-008045405-4.00849-1

Castro, S., & Sanchez-Azofeifa, A. (2018). Testing of automated photochemical reflectance index sensors as proxy measurements of light use efficiency in an aspen forest. Sensors, 18(10), Article 3302. https://doi.org/10.3390/s18103302

Chaali, N., Ouazaa, S., Jaramillo-Barrios, C. I., Araujo Carrillo, G. A., & Ávila Pedraza, E. Á. (2020). Edaphoclimatic characterization and crop water requirement of Arracacha (Arracacia xanthorrhiza Bancroft) roots in upland production areas. Scientia Horticulturae, 272, Article 109533. https://doi.org/10.1016/j.scienta.2020.109533

Chastain, D. R., Snider, J. L., Choinski, J. S., Collins, G. D., Perry, C.D., Thimoty, J.W., Ronald, G., Byrd, S.A., & Porter, W. (2016). Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum. Journal of Plant Physiology, 199, 18–28. https://doi.org/10.1016/j.jplph.2016.05.003

Departamento Administrativo Nacional de Estadística. (2020). Sistema de información de precios SIPSA, 2018-2019. Recuperado en marzo, 2020, de https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-deinformacion-de-precios-sipsa

Drake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D., Maier, C.,

Pfautsch, S., Smith, R.A., & Tjoelker, D.T. (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 247, 454-466. https://doi.org/10.1016/j.agrformet.2017.08.026

Doo, H. S., Ryu, J. H., Lee, K. S., & Choi, S. Y. (2001). Effect of plant density on growth responses and yield in yacon. Korean Journal of Crop Science, 46(5), 407-410.

Fang, H., & Liang, S. (2008). Leaf area index models. In S. E. Jørgensen, & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 2139-2148). Elsevier B. V. https://doi.org/10.1016/B978-0-12-409548-9.09076-X

Flénet, F., Kiniry, J. R., Board, J. E., Westgate, M. E., & Reicosky, D. C. (1996). Row spacing effects on light extinction

coefficients of corn, sorghum, soybean, and sunflower. Agronomy Journal, 88(2), 185–190. https://doi.org/10.2134/agronj1996.00021962008800020011x

Garbulsky, M. F., Peñuelas, J., Papale, D., & Filella, I. (2008). Remote estimation of carbon dioxide uptake by a Mediterranean forest. Global Change Biology, 14(12), 2860–2867. https://doi.org/10.1111/j.1365-2486.2008.01684.x

García, J., & Moreno, L. P. (2016). Respuestas fisiológicas de Theobroma cacao L. en etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronómica, 65(1), 44-50. https://doi.org/10.15446/acag.v65n1.48161

Garnica-Montaña, J. P., Rodriguez, O. J., Jaramillo-Barrios, C. I., & Vallejo-Cabrera, F. A. (2020). Diversidad morfológica y caracteres de selección del germoplasma de arracacha (Arracacia xanthorriza Bancr.) en Colombia. Ciencia y Agricultura, 17(3), 49-62. https://doi.org/10.19053/01228420.v17.n3.2020.11150

Graciano, J. D., Zárate, N. A., Vieira, M. do C., Rosa, Y. B., & M. A. Sediyama. (2007). Espaçamento entre fileiras e entre plantas na produção da mandioquinha-salsa ‘Branca’. Ciência e Agrotecnologia, 31(6), 1688–1695. https://doi.org/10.1590/S1413-70542007000600013

Gutiérrez-Malaxechebarría, Á. M. (2011). Nueva aparcería en la producción de arracacha (Arracacia xanthorrhiza) en Cajamarca (Colombia). Cuadernos de Desarrollo Rural, 8(67), 205–228. https://doi.org/10.11144/Javeriana.cdr8-67.napa

Hanlon, E. A., & Hochmuth, G. J. (2009). Carrot. In C. R. Campbell (Ed.), Reference sufficiency ranges for plant analysis in the southern region of the United States (pp. 63-65). Southern Region Agricultural Experiment Station.

Hartz, T. K., Johnstone, P. R., & Nunez, J. J. (2005). Production environment nitrogen fertility affect carrot cracking.

HortScience, 40(3), 611–615. https://doi.org/10.21273/hortsci.40.3.611

Hashemi, A. M., Herbert, S. J., & Putnam, D. H. (2005). Yield response of corn to crowding stress. Agronomy Journal, 97(3), 839–846. https://doi.org/10.2134/agronj2003.0241

Hatfield, J. L., & Dold, C. (2019). Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science, 10, Article 103. https://doi.org/10.3389/fpls.2019.00103

Hermann, M. (1997). Arracacha (Arracaccia xanthorrhiza Bancroft). In M. Hermann, & J. Heller (Eds.), Andean Roots and Tubers: Ahipa, arracacha, maca and yacon (pp. 75-172). Plant Genetics Resources Institute.

Honda, E. A., Pilon, N. A. L., & Durigan, G. (2019). The relationship between plant density and survival to water stress in seedlings of a legume tree. Acta Botanica Brasilica, 33(3), 602-606. https://doi.org/10.1590/0102-33062018abb0432

Hou, W., Rizwan, M., Zhang, J., Lu, J., Ren, T., Cong, R., & Li, X. (2019). Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agriculture, Ecosystems and Environment, 269, 183-192. https://doi.org/10.1016/j.agee.2018.10.001

Imai, K., Suzuki, Y., Mae, T., & Makino, A. (2008). Changes in the synthesis of Rubisco in rice leaves in relation to senescence and N influx. Annals of Botany, 101(1), 135–144. https://doi.org/10.1093/aob/mcm270

Jaimez, R. E., Santos, N., Añez, B., Vásquez, J., & Espinoza, W. (2008). Photosynthesis of field-grown Arracacha (Arracacia xanthorriza Bancroft) cultivars in relation to root-yield. Scientia Horticulturae, 118(2), 100-105. https://doi.org/10.1016/j.scienta.2008.05.027

Jaramillo-Barrios, C. I., Barragán-Quijano, E., & Monje-Andrade, B. (2019). Populations of Spodoptera frugiperda

(Lepidoptera: Noctuidae) cause significant damage to genetically modified corn crops. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8953–8962. https://doi.org/10.15446/rfnam.v72n3.75730

Kohzuma, K., & Hikosaka, K. (2018). Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochemical and Biophysical Research Communications, 498(1), 52–57. https://doi.org/10.1016/j.bbrc.2018.02.192

Kováč, D., Veselovská, P., Klem, K., Večeřová, K., Ač, A., Peñuelas, J., & Urban, O. (2018). Potential of Photochemical

Reflectance Index for indicating photochemistry and light use efficiency in leaves of european beech and Norway

spruce trees. Remote Sensing, 10(8), Article 1202. https://doi.org/10.3390/rs10081202

Kaur, G., Asthir, B., Bains, N. S., & Farooq, M. (2015). Nitrogen nutrition, its assimilation and remobilization in diverse wheat genotypes. International Journal of Agriculture and Biology, 17(3), 1814-9596. https://doi.org/10.17957/IJAB/

Liu, Q., Zhou, X., Li, J., & Xin, C. (2017). Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice. Scientific Reports, 7(1),14072. https://doi.org/10.1038/s41598-017-14672-7

Luo, L. P., Yu, Z. W., Wang, D., Zhang, Y. L., & Shi, Y. (2011). Effects of plant density and soil moisture on photosynthetic characteristics of flag leaf and accumulation and distribution of dry matter in wheat. Acta Agronomica Sinica, 37(6), 1049–1059. https://doi.org/10.1016/S1875-2780(11)60030-8

Magolbo, L. A., Carmo, E. L., Garcia, E. L., Fernandes, A. M., & Leonel, M. (2015). Dry matter accumulation and mineral nutrition of arracacha in response to nitrogen fertilization. Pesquisa Agropecuária Brasileira, 50(8), 669-680. https://doi.org/10.1590/S0100-204X2015000800005

Morillo, E., Madeira, N., & Jaimez, R. (2020). Arracacha. In E. Geoffriau & P. W. Simon (Eds.), Carrots and related vegetable Umbelliferae (2nd ed., p. 346). CAB International. https://doi.org/10.1079/9781789240955.0000

Madeira, N. R., Ferreira de Carvalho, A. D., da Silva, G. O., Borges Pinheiro, J., Borges Pereira, R., Michereff Filho, M., Pires Feldberg, N., Moreira, S. O., Ribeiro Silveira, G. S., & Cássia, R. M. (2017). Proposição de um sistema de produção de mudas de mandioquinha-salsa (Circular Técnica 161). Brazilian Agricultural Research Corporation.

Olechowicz, J., Chomontowski, C., Olechowicz, P., Pietkiewicz, S., Jajoo, A., & Kalaji, M. H. (2018). Impact of intraspecific competition on photosynthetic apparatus efficiency in potato (Solanum tuberosum) plants. Photosynthetica, 56(3), 971–975. https://doi.org/10.1007/s11099-017-0728-x

Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., De Souza, R., & Thompson, R.B. (2018). Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors, 18(7), 2083. https://doi.org/10.3390/s18072083

Page, K. L., Dang, Y. P., Dalal, R.C., Reeves, S., Thomas, G., Wang, W., & Thompson, J.P. 2019. Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period. Soil Tillage Research, 194, Article 104319. https://doi.org/10.1016/j.still.2019.104319

Pinto-Acero, Y. L., Alvarado-Gaona, Á. E., Burgos-Ávila, Y. E., Balaguera-López, H. E., & Ramírez-González, S. I. (2019). Characterization of three Arracacia xanthorrhiza Bancroft genotypes using morphological and color parameters. Revista Colombiana de Ciencias Hortícolas, 13(3), 426-434. https://doi.org/10.17584/rcch.2019v13i3.8948

Quevedo, Y. M., Beltrán, J. I., & Barragán-Quijano, E. (2018). Effect of sowing density on yield and profitability of a hybrid corn under tropical conditions. Agronomía Colombiana, 36(3), 248–256. https://doi.org/10.15446/agron.colomb.v36n3.71268

Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiology, 115(1), 36-42. https://doi.org/10.1104/pp.110.168559

Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51(1), 447–458. https://doi.org/10.1093/jexbot/51.suppl_1.447

Richmond-Zumbado, F., & Méndez-Soto, C. (2010). Rendimiento de 12 híbridos comerciales de zanahoria (Daucus carota L.) en el campo y en la planta de empaque. Agronomía Mesoamericana, 21(1), 167-176. https://doi.org/10.15517/am.v21i1.4922

Rodríguez, O. J., Garnica, J. P., Villamil, J. E., Atencio, L. A., & Martínez, R.A. (2019). AGROSAVIA La 22: Primera variedad de arracacha en Colombia: Amarilla, de alta producción y adaptada a condiciones agroecológicas de la zona Andina. Corporación Colombiana de Investigación Agropecuaria.

Rosso, C. A., Medina, C. I., & Lobo, M. (2002). Morphologic characterization and agronomic evaluation of a Colombian collection of arracacha (Arracacia xanthorrhiza Bancroft). Plant Genetic Resources Newsletter, 132, 22–29.

Sher, A., Khan, A., Ashraf, U., Liu, H. H., & Li, J. C. (2018). Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk. Frontiers Plant Science, 11(9), Article 1047. https://doi.org/10.3389/fpls.2018.01047

Shi, D. Y., Li Y. H., Zhang, J., Liu, P., Zhao, B., & Dong, S. (2016). Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. Journal of Integrative Agriculture, 15(11), 2515–2528. https://doi.org/10.1016/S2095-3119(16)61355-2

Silva, B. M., da Silva, É. A., de Oliveira, G.C., Ferreira, M. M., & Serafim, M. E. (2014). Plant-available soil water capacity: estimation methods and implications. Revista Brasilera de Ciência do Solo, 38(2), 464–475. https://doi.org/10.1590/s0100-06832014000200011

Silva, T. S., Lima e Silva, P. S., Braga, J. D., Da Silveira, L. M., & De Sous, P. P. (2013). Planting density and yield of cassava roots. Revista Ciência Agronômica, 44(2), 317–324. https://doi.org/10.1590/S1806-66902013000200014

Singh, M., Kumar, P., Kumar, V., Solanki, I. S., McDonalda, A. J., Kumar, A., Pooniaa, S. P., Kumar, V., Ajay, A., Kumar, A., Singh, D. K., Balwinder-Singha, Singh, S., & Malik, R. K. (2020). Intercomparison of crop establishment methods for improving yield and profitability in the rice-wheat system of Eastern India. Field Crops Research, 250, Article 107776. https://doi.org/10.1016/j.fcr.2020.107776

Slattery, R. A., Vanloocke, A., Bernacchi, C. J., Zhu, X. G., & Ort, D.R. (2017). Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Frontiers in Plant Science, 18(8), Article 549. https://doi.org/10.3389/fpls.2017.00549

Son, J. K., Shin, W. T., & Cho, J. Y. (2017). Laboratory and field assessment of the Decagon 5TE and GS3 sensors for estimating soil water content in saline-alkali reclaimed soils. Communications in Soil Science and Plant Analysis, 48(19), 2268–2279. https://doi.org/10.1080/00103624.2017.1411501

Song, D., Tariq, A., Pan, K., Khan, S.U., Saleh, T. A., Gong, S., Zhang, A., & Wu, X. (2020). Influence of planting distance and density on the yield and photosynthetic traits of sweet potato (Ipomoea balatas L.) under an intercropping system with walnut (Juglans regia) saplings. Soil Tillage Research, 196, Article 104484-. https://doi.org/10.1016/j.still.2019.104484

Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., Rao, X., Liu, S., Cai, X., He, D., & Fu, S. (2018). Soil erosion and water retention varies with plantation type and age. Forest Ecology Management, 422, 1–10. https://doi.org/10.1016/j.foreco.2018.03.048

Testa, G., Reyneri, A., & Blandino, M. (2016). Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 72, 28-37. https://doi.org/10.1016/j.eja.2015.09.006

Torales-Pacito, E. P., Zárate, N. A. H., Vieira, M. D. C., Menani-Heid, D., Bassi-Moreno, L., & Rotermel-Grando, V. (2015). Productivity peruvian carrot in response to plant spacings and average masses of seedlings. Bioscience Journal, 31(2), 433-444.

Vahrmeijer, J. T., Annandale, J. G., Steyn, J. M., & Bristow, K. L. (2018). Model parameters of four important vegetable crops for improved water use and yield estimation. Water S.A, 44(4), 528-538. https://doi.org/10.4314/wsa.v44i4.02

Vongcharoen, K., Santanoo, S., Banterng, P., Jogloy, S., Vorasoot, N., & Theerakulpisut, P. (2018). Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica, 56, 1398-1413. https://doi.org/10.1007/s11099-018-0849-x

Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1–2), 106-122. https://doi.org/10.1016/j.agrformet.2006.12.003

Westerveld, S. M., McKeown, A. W., Scott-Dupree, C. D., & McDonald, M. R. (2004). Assessment of chlorophyll and nitrate meters as field tissue nitrogen tests for cabbage, onions, and carrots. Horttechnology, 14(2), 176-188. https://doi.org/10.21273/horttech.14.2.0179

Yang, G, Z., Luo, X. J., Nie, Y. C., & Zhang, X. (2014). Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal Integrative Agriculture, 13(10), 2154-2163. https://doi.org/10.1016/S2095-3119(13)60727-3

Zarate, N. A. H., Vieira, M. D. C., Graciano, J. D., Gonzales-Figueiredo, P., Brandão-Blans, N., & Mazaron-Curioni, B. (2009). Produtividade de mandioquinha-salsa sob diferentes densidades de plantio e tamanho das mudas. Ciência e Agrotecnologia, 33(1), 139-143. https://doi.org/10.1590/S1413-70542009000100020

Zarate, N. A. H., Vieira, M. D. C., Rech, J., Quast, A., Pontim, B. C., & Gassi, R. P. (2008). Yield and gross income arracacha in monocrop and intercropping with Japanese bunching onion and parsley. Horticultura Brasileira, 26(2), 287-291. https://doi.org/10.1590/s0102-05362008000200032

Zhang, H., Yu, C., Kong, X., Hou, D., Gu, J., Liu, L., Wang, Z., & Yang, J. (2018). Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Research, 215, 1–11. https://doi.org/10.1016/j.fcr.2017.09.034



How to Cite

Quevedo Amaya, Y. M., Villamil Carvajal, J. E., Garnica Montaña, J. P., Montenegro Ramos, O., & Barragán Quijano, E. (2021). High population density in arracacha (Arracacia xanthorrhiza Bancroft) increase radiation interception, yield, and profitability. Agronomía Mesoamericana, 32(2), 399–421. https://doi.org/10.15517/am.v32i2.43281