Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit




drought, agricultural yield, Oryza sativa


Introduction. The water deficit negatively affects rice plants and limits their productivity. Arbuscular mycorrhizal symbiosis has been shown to improve rice productivity in drought conditions. Objective. To propose a new categorization for the state of water stress of rice plants inoculated (AM) or not with arbuscular mycorrhizal fungi (nonAM) and exposed to water deficit (D) during the vegetative phase. Materials and methods. The experiment was carried out under controlled greenhouse conditions during the years 2009 and 2010 at the Zaidín Experimental Station, Granada, Spain. The rice transplantation was carried out fourteen days after germination to pots with a 5 cm water sheet and at 30, 40, or 50 days after transplantation (DAT) they were subjected to water deficit during a period of 15 days, at which time the water sheet was restored. The control treatment was maintained throughout the cycle under flood conditions (ww). Evaluations were performed at 45, 55, 65 DAT and after recovery at 122 DAT. The harvest was carried out at 147 DAT. Results. The reduction in water supply demonstrated water stress in the plants, manifested by the decrease in the water potential of the leaves. Arbuscular mycorrhizal symbiosis always favored the water status of the plant. Four categories of water status of plants were proposed taking into account water potentials and agricultural yield: no stress (≥-0.67 MPa); light stress (<-0.67 to -1.20 MPa); moderate stress (<-1.20 to -1.60 MPa), and severe stress (<-1.60 MPa). Conclusion. The categorization of stress due to the water deficit is a tool of high scientific value for the specific case of rice, since this plant has the capacity to adapt to tolerate the presence of a sheet of water throughout its biological cycle and is highly susceptible to water deficit.


Download data is not yet available.

Author Biographies

Michel Ruiz Sánchez, Instituto Nacional de Ciencias Agricolas (INCA)

Assistant Researcher and Assistant Professor

Yaumara Muñoz Hernández, Universidad Central Municipal “Los Palacios”

Municipal University Center “Los Palacios”,


Aroca, R., Vernieri, P., & Ruiz-Lozano, J. M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany, 59(8), 2029-2041.

Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373-381.

Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal. 2a Ed. McGraw-Hill.

Bárzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martínez-Ballesta, M. C., Carvajal, M., & Ruiz-Lozano, J. M. (2012).

Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both wellwatered and drought stress conditions. Annals of Botany, 109(5), 1009-1017.

Bárzana, G., Aroca, R., & Ruiz-Lozano, J. M. (2015). Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell and Environment, 38(8), 1613-1627.

Bernier, J., Atlin, G. N., Serraj, R., Kumar, A., & Spaner, D. (2008). Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 88(6), 927-939.

Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. American Society of Plant Physiologists. The Plant Cell, 7, 1099-1111.

Bray, E. A. (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany, 55(407), 2331-2341.

Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6(547), 1-16.

Carbonneau, A. (1998). Qualitative aspects. In J. R. Tiercelin (Ed.), Proceedings of the XXVI-Ith World Congress of Vine and Wine (pp. 258-276). Lavoisier Tec et Doc ed.

Cate, R. B., & Nelson, L. A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Journal, 35(4), 658-659.

Damour, G., Simonneau, T., Cochard, H., & Urban I. (2010). An overview of models of stomatal conductance at the leaf level. Plant Cell & Environment, 33(9), 1419-1438.

Degiovanni, V., Martínez, C. P., & Motta, F. (Eds.) (2010). Producción eco-eficiente del arroz en América Latina. Centro Internacional de Agricultura Tropical.

Dell’Amico, J., Rodríguez, P., Torrecillas, A., Morte, A., & Sánchez-Blanco M. J. (2002). It influences of the micorrización in the growth and the relationships water of exposed tomato plants to a cycle of drought and recovery. Cultivos Tropicales, 23(1), 29-34.

Deloire, A., Vaudour, E., Carey, V., Bonnardot, V., & Van Leeuwen, C. (2005). Grapevine responses to terroir, a global approach. Journal International des Science de la Vigne et du Vin, 39(4), 149-162. 2005.39.4.888

Deloire, P. A., & Heyns, D. (2011). The leaf water potentials: Principles, method and thresholds. Wynboer, 265, 119–121.

Duncan, D. B. (1955). Multiple range and multiple F-tests. Biometrics, 11(1), 1–42.

Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331–349.

Farooq, M., Wahid, A., Basra, S., & Islam-ud-Din, M. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal Agronomy and Crop Science, 195(4), 262–269.

Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., & White L. L. (Eds.), Intergovernmental Panel on Climate Change. (2014). Climate change: Impacts, adaptation, and vulnerability Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

García, A., Dorado, M., Pérez, I., & Montilla, E. (2009). Dry mass accumulation of different organs of the rice plant under water deficit conditions. Agronomía Tropical, 59(1), 15-24.

García, A., Dorado, M., Pérez, I., & Montilla, E. (2010). Effect of water deficit on the distribution of photoassimilate in rice plants (Oryza sativa L.). Interciencia, 35(1), 47-54.

Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytologist, 84(3), 489-500.

Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science, 2014, Article 151.

Hattori, Y., Nagai, K., & Ashikari. (2011). Rice growth adapting to deepwater. Current Opinion in Plant Biology, 14(1), 100-105.

Hsiao, T. C. (1973). Plant responses to water stress. Annual Review Plant Physiology, 24, 519-570.

International Rice Research Institute. (2013). Standard evaluation system for rice (5th Ed). International Rice Research Institute.

Ishii, T., Shrestha, Y., H, Marsumoto, I., & Kadoya, K. (1996). Effect of ethylene on the Growth of vesicular-arbuscular mycorrhizal fungi and on the mycorrhizal formation of trifoliate orange roots. Journal of the Japanese Society for Horticultural Science, 65(3), 2525-259.

Kamoshita, A., Babu, R. C, Boopathi, N. M., & Fukai, S. (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research, 109(1-3), 1-23.

Khush, G. S. (2003). Productivity improvements in rice. Nutrition Reviews, 61(6), 114-116.

Lehto, T., & Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 21, 71-90.

Li, H., Ye, Z. H., Chan, W. F., Chen, X. W., Wu, F. Y., Wu, S. C., & Wong, M. H. (2011). Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environmental Pollution, 159(10), 2537-2545.

Lim, P. O., Kim, H. J., & Nam, H. G. (2007). Leaf senescence. Annual Review of Plant Biology, 58, 115-136.

Ma, Y. H., Ma, F. W., Zhang, J. K., Li, M. J., Wang, Y. H & Liang, D. (2008). Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science, 175(6), 761-6.

Maiti, D., Toppo, N. N., & Variar, M. (2011). Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza, 21(8), 659.

Maiti, D., Singh, R. K., & Variar, M. (2012). Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity

to improve phosphorus nutrition of upland rice (Oryza sativa L.). Biology and Fertility of Soils, 48, 67-73.

Malik, AI., Colmer, T. D., Lambers H., & Schortemeyer, M. (2003). Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell & Environment, 26(10), 1713-1722.|

Mostajeran, A., &. Rahimi-Eichi, V. (2009). Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. American-Eurasian Journal Agriculture and Environmental Science, 5(2), 264-272.

Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z. S., Muhammad, I., & Kolapo, K. (2019). Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. International journal of Molecular Sciences, 20(14), 3519.

Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre- and post-véraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera L, cv Shiraz. American Journal of Enology and Viticulture, 53(4), 261-267.

Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. (2014). Response of plants to water stress. Frontiers in Plant Science, 2014, Article 86.

Pérez, N., González, M. C., Cristo, E., Díaz S. H., Díaz, E. C., & Blanco, G. (2018). Cultivares cubanos de arroz. Ediciones INCA.

Phillips, J. M., & Hayman, D. S. (1970). Improve procedures for cleaning root and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infections. Tranfer Britannic Micology Society, 55, 158-161.

Polón, R. (2007). Study of different handlings of water in the cultivation of the rice (Oryza sativa L.) and their influence in the germination, the dry mass, the height of the plant and the yield. Cultivos Tropicales, 28(2), 101-103.

Polón, R., & Castro, R. (1999). Application of the water stress like alternative to increase the yield in the cultivation of the rice (Oryza sativa L.). Cultivos Tropicales, 20(3), 37-39.

Porcel R., & Ruiz-Lozano, J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55(403), 743-50.

Pozo, M. J., López-Róez, J. A., Azcón-Aguilar, C., & García-Garrido, J. M. (2015). Phytohormones as integrators of

environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205(4), 1431-1436.

Rivera, R., Fernández, F., Fernández, K., Ruiz, L., Sánchez, C., & Riera, M. (2007). Advances in the management of effective arbuscular symbiosis in tropical ecosystems. In C. Hamel, & C. Plenchette (Eds.), Mycorrhizae in crop productions (pp. 151-195). The Haworth Press, Inc.

Ruiz-Lozano, J. M., Porcel, R., Bárzana, G., Azcón-Aguilar, R., & Aroca, R. (2012). Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance. State of the art. In. R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 335-362). Springer-Verlag.

Ruiz-Sánchez, M., Armada, E., Muñoz, Y., García de Salamone, I., Aroca, R. Ruiz-Lozano, J. M., & Azcón-Aguilar, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 168(10), 1031-1037.

Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167(11), 862-869.

Ruiz-Sánchez, M, Geada, D., Muñoz, Y., Martínez, A., Santana, Y., Benítez, M., Aroca, R., & Ruiz-Lozano, J. M. (2015).

Mycorrhizae arbuscular symbiosis in rice plants (Oryza sativa L.) under water stress. Part II Biochemical response. Culivos Tropicales, 36(3), 88-95.

Serraj, R., McNally, I. K., Slamet-Loedin, I., Kohli, A., Haefele, M. S., Atlin, G., & Kumar A. (2011). Drought resistance

improvement in rice: an integrated genetic and resources management strategy. Plant Production Science, 14(1), 1-14.

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803.

Silva-Robledo H, Ortiz-Lizana M., & Acevedo-Hinojosa, E. (2007). Hydric relationships and osmotic adjustment in wheat. Agrociencia, 41(1), 23-34.

Singhal, P., Jan, A. T., Azam, M., & Haq, Q. M. R. (2016). Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Frontiers of Life Science, 9(1), 52–63.

Smith, S. E, Facelli E, Pope, S., & Smith, F. A. (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326, 3-20.

Taiz, L., & Zeiger, E. (2006). Plant physiology (4th Ed.). Sinauer Associates, Inc, Publishers.

Trenberth, K. E., Dai A., Van Der Schrier G., Jones P. D., Barichivich J., Briffa K. R., & Sheffield J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17–22.

Vallino M., Fiorilli, V., & Bonfante, P. (2014). Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell and Environment, 37(3), 557-572.

Vallino, M., Greppi, D., Novero, M., Bonfante, P., & Lupotto, E. (2009). Rice root colonization by mycorrhizal and endophytic fungi in aerobic soil. Annals of Applied Biology, 154(2), 195-204.

Williams, L. E., & Araujo, F. J. (2002). Correlations among leaf, midday leaf and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. Journal of the American Society for Horticultural Science, 127(3), 448-454.

Zubarer, M. A., Chowdhury, A., Islam, M. Z., Ahmed, T., & Hasan, M. A. (2007). Effects of water stress on growth and yield attributes of Aman rice genotypes. International Journal of Sustainable Crop Production, 2(6), 25-30.



How to Cite

Ruiz Sánchez, M., Cabrera Rodríguez, J. A., Del’Anico Rodríguez, J. M., Muñoz Hernández, Y., Aroca Álvarez, R., & Ruiz Lozano, J. M. (2021). Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit. Agronomía Mesoamericana, 32(2), 339–355.