Ecosystem-based Adaptation by smallholder basic grain farms in Guatemala and Honduras

Authors

  • Adina Chain-Guadarrama Centro Agronómico Tropical de Investigación y Enseñanza http://orcid.org/0000-0002-6944-2064
  • M. R. Martínez-Rodríguez Conservation International
  • José Mario Cárdenas Ministerio de Agricultura y Ganadería (MAG)
  • Sergio Vílchez-Mendoza Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)
  • C. A. Harvey Conservation International https://orcid.org/0000-0001-8015-703X

DOI:

https://doi.org/10.15517/ma.v29i3.32678

Keywords:

beans, climate change, home gardens, live fences, maize.

Abstract

In Central America maize and beans are usually cultivated by farmers who have small landholdings and live in vulnerable situations. Climate change is an important threat to these smallholder basic grain farmers, putting at risk their production systems and their livelihoods. The use of Ecosystem-based Adaptation (EbA) can help them to adapt to climate change, however there is limited information on the use of EbA. The objective of the present work was to characterize the EbA strategies that smallholder basic grain farmers of four landscapes in Guatemala and Honduras use to increase their resilience to climate change. Using interviews and field measurements in 160 farms, between July 2014 and June 2015, we 1) explored how common the use of different EbA practices is, 2) documented the biophysical characteristics of these practices, and 3) explored if the implementation and characteristics of EbA practices differed among landscapes. Our results indicate that even though they own small land areas (mean maize plot area of ~0.68 ha), have low education levels and low access to technical training and advice, many smallholder basic grain farmers are using EbA practices in their farms. The most common EbA practices were the use of dispersed trees, home gardens and live fences. An ANOVA anlysis indicated significant differences in the use of different EbA practices among farmers, which suggests that farmers adapt practices in response to the social and biophysical conditions where they live. Our study suggests that smallholder basic grain farmers have the experience and the knowledge to use EbA practices and recognize the benefits derived from the implementation of such practices. However, in order to increase use of EbA practices, more technical, financial and political support is needed.

Downloads

Download data is not yet available.

References

Altieri, M.A., F.R. Funes-Monzot, and P. Petersen. 2012. Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron. Sustain. Dev. 32:1-13. doi:10.1007/s13593-011-0065-6

Arriaza-Vallejo, N.A. 1995. Comparación de tres prácticas agronómicas para el manejo y conservación de suelos en ladera, bajo el sistema frijol-maíz en Turrialba, Costa Rica. Tesis M.Sc., CATIE, Turrialba, CRC.

Below, T.B., K.D. Mutabazi, D. Kirschke, C. Franke, S. Sieber, R. Siebert, and K. Tscherning. 2012. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Change 22 :223-235. doi:10.1016/j.gloenvcha.2011.11.012

Braun, A.R., G. Thiele, and M. Fernández. 2000. Farmer field schools and local agricultural research committees: complementary platforms for integrated decision-making in sustainable agriculture. Network Paper Nº 105. Agricultural Research and Extension Network, London, GBR. https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/8195.pdf (accessed 11 Jun. 2018).

Bryan, E., C. Ringler, B. Okoba, C. Roncoli, S. Silvestri, and M. Herrero. 2013. Adapting agriculture to climate change in Kenya: household strategies and determinants. J. Environ. Manage. 114:26-35. doi:10.1016/j.jenvman.2012.10.036

Conde, C., D. Liverman, M. Flores, R. Ferrer, R. Araújo, E. Betancourt, G. Villareal, and C. Gay. 1997. Vulnerability of rainfed maize crops in Mexico to climate change. Clim. Res. 9:17-23. doi:10.3354/cr009017

Current, D., 1995. Economic and institutional analysis of projects promoting on farm tree planting in Costa Rica. En: D. Current et al., editors, Costs, benefits and farmers’ adoption of agroforestry-project experience in Central America and the Caribbean. World Bank Publications, WA, USA. p. 45-71.

Deressa, T.T., R.M. Hassan, and C. Ringler. 2011. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 149:23-31. doi:10.1017/S0021859610000687

Dilley, M., R.S. Chen, U. Deichmann, A.L. Lerner-Lam, M. Arnold, J. Agwe, P. Buys, O. Kjevstad, B. Lyon, and G. Yetman, 2005. Natural disaster hotspots: A global risk analysis. Rep. 34423. World Bank, WA, USA.

Di-Rienzo J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, y C.W. Robledo. 2017. InfoStat versión 2017. Grupo InfoStat, Universidad Nacional de Córdoba, ARG.

Eakin, H., 2000. Smallholder maize production and climatic risk: A case study from Mexico. Clim. change 45:19-36. doi:10.1023/A:1005628631627

Erenstein, O. 2003. Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agric. Ecosyst. Environ. 100:17-37. doi:10.1016/S0167-8809(03)00150-6

FAO. 2005. El sistema agroforestal Quesungual. FAO, Roma, ITA.

García-Serrano, C.R., and J.P. Del-Monte. 2004. The use of tropical forest (agroecosystems and wild plant harvesting) as a source of food in the bribri and cabecar cultures in the Caribbean Coast of Costa Rica. Econ. Bot. 58:58-71. doi:10.1663/0013-0001(2004)058[0058:TUOTFA]2.0.CO;2

Harvey, C.A., M.R. Martínez-Rodríguez, J.M. Cárdenas, J. Avelino, B. Rapidel, R. Vignola, C.I. Donatti, and S. Vilchez-Mendoza. 2017. The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agric. Ecosyst. Environ. 246:279-290. doi:10.1016/j.agee.2017.04.018.

Harvey, C.A., C. Villanueva, J. Villacís, M. Chacón, D. Muñoz, M. López, M. Ibrahim, R. Gómez, R. Taylor, J. Martínez, A. Navas, J. Saenz, D. Sánchez, A. Medina, S. Vilchez, B. Hernández, A. Perez, F. Ruiz, F. López, I. Lang, and F.L. Sinclair. 2005. Contribution of live fences to the ecological integrity of agricultural landscapes. Agric. Ecosyst. Environ. 111:200-230. doi:10.1016/j.agee.2005.06.011

Hellin, J., and S. López-Ridaura. 2016. Soil and water conservation on Central American hillsides: if more technologies is the answer, what is the question? AIMS Agric. Food 1:194-207. doi:10.3934/agrfood.2016.2.194

Hellin, J., and K. Schrader. 2003. The case against direct incentives and the search for alternative approaches to better land management in Central America. Agric. Ecosyst. Environ. 99:61-81. doi:10.1016/S0167-8809(03)00149-X

Hellin, J., L.A., Welchez, and I. Cherrett. 1999. The quezungual system: an indigenous agroforestry system from western Honduras. Agrofor. Syst. 46:229-237. doi:10.1023/A:1006217201200

Hisali, E., P. Birungi, and F. Buyinza. 2011. Adaptation to climate change in Uganda: evidence from micro level data. Glob. Environ. Change 21:1245-1261. doi:10.1016/j.gloenvcha.2011.07.005

Holdridge, L.R. 2000. Ecología basada en zonas de vida. 2a ed. IICA. San José, CRC.

Holland, M.B., S.Z. Shamer, P. Imbach, J.C. Zamora, C. Medellin, E.J. Leguia, C.I. Donatti, M.R. Martínez-Rodríguez, and C.A. Harvey. 2017. Mapping agriculture and adaptive capacity: applying expert knowledge at the landscape scale. Clim. Change 141:139-153. doi:10.1007/s10584-016-1810-2

Holt-Giménez, E. 2002. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric. Ecosyst. Environ. 93:87-105. doi:10.1016/S0167-8809(02)00006-3

Imbach, P., M. Beardsley, C. Bouroncle, C. Medellin, P. Läderach, H. Hidalgo, E. Alfaro, J. VanEtten, R. Allan, D. Hemming, R. Stone, L. Hannah, and C.I. Donatti. 2017. Climate change, ecosystems and smallholder agriculture: An introduction to the special issue. Clim. Change 141:1-12. doi:10.1007/s10584-017-1920-5

Ithinji, G.K. 2011. Determinants of adaptation of shade coffee technology and the role of agroforestry in the productivity and profitability of coffee in South District, Kenya. PhD. Thesis, Egerton University, Nairobi, KEN.

Janick, J. 2013. Development of new world crops by indigenous Americans. Hort. Sci. 48:406-412.

Knowler, D., and B. Bradshaw. 2007. Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 21:25-48. doi:10.1016/j.foodpol.2006.01.003

Méndez, MA., O. Cáceres, P. Galeano, R.F. Hernández, y R.M. Zavala. 1998. Efecto del asocio de maíz con dos especies de frijol abono Mucuna pruriens Bort y Cannavalia ensiformis l.d.c. en las poblaciones de plagas del suelo y follaje en Miraflor, Estelí, Nicaragua. En: O. Caceres, editor, Compartiendo una experiencia de manejo integrado de plagas: PROMIPPAC / Fase 95-98. EPAEZ; COSUDE, y PROMIPPAC, Managua, NIC. p. 112-116.

Michalski, F., J.P. Metzger, and C.A. Peres. 2010. Rural property size drives patterns of upland and riparian forest retention in a tropical deforestation frontier. Glob. Environ. Change 20:705-712. doi:10.1016/j.gloenvcha.2010.04.010

Pérez-Marin, A.M., R.S. César-Menezes, E. Dias-Silva, e E. Valadares-de-Sá-Barreto-Sampaio. 2006. Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no agreste paraibano. Rev. Bras. Ciênc. Solo 30:555-564. doi:10.1590/S0100-06832006000300015

Rocha, J.A.N. 1977. Erosión de suelos de pendientes cultivadas con maíz y frijol con diferentes grados de cobertura viva dentro de una plantación forestal. Tesis M.Sc., CATIE, Turrialba, CRC.

SCBD (Secretariat of the Convention on Biological Diversity). 2009. Connecting biodiversity and climate change mitigation and adaptation: report of the second Ad Hoc technical expert group on biodiversity and climate change. Rep. 41. CBD, Montreal, CAN.

Sivanpillai, R., and T.L. Thurow. 2008. Hazard management lessons learned through mapping and assessing landslides triggered by Hurricane Mitch. In: Proceedings of the 15th International Congress of the International Soil Conservation Organization. Budapest, HUN. ISCO. http://tucson.ars.ag.gov/isco/isco15/pdf/Silvanpillai%20R%20Thurow%20T_Hazard%20management%20lessons.pdf (accessed Jun. 11, 2018).

Schmidt, A., A. Eitzinger, K. Sonder, y G. Sain. 2012. Tortillas on the roaster: Central America’s maize–bean systems and the changing climate. Rep. 6. CIAT Policy, Cali, COL.

Thangata, P.H., and J.R.R. Alavalapati. 2003. Agroforestry adoption in southern Malawi: the case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 78:57-71. doi:10.1016/S0308-521X(03)00032-5

Tucker, C.M., H. Eakin, and E.J. Castellanos. 2010. Perceptions of risk and adaptation: coffee producers market shocks, and extreme weather in Central America and Mexico. Glob. Environ. Change 20:23-32. doi:10.1016/j.gloenvcha.2009.07.006

Vignola, R., C.A. Harvey, P. Bautista-Solis, J. Avelino, B. Rapidel, C.I. Donatti, and M.R. Martínez. 2015. Ecosystem-based adaptation for smallholder farmers: definitions, opportunities and constraints. Agriculture. Agric. Ecosyst. Environ. 211:126-132. doi:10.1016/j.agee.2015.05.013.

Wall, P.C. 2007. Tailoring conservation agriculture to the needs of small farmers in developing countries: an analysis of issues. J. Crop Improv. 19:137-155. doi:10.1300/j411v19n01_07

Published

2018-09-01

How to Cite

Chain-Guadarrama, A., Martínez-Rodríguez, M. R., Cárdenas, J. M., Vílchez-Mendoza, S., & Harvey, C. A. (2018). Ecosystem-based Adaptation by smallholder basic grain farms in Guatemala and Honduras. Agronomía Mesoamericana, 29(3), 571–583. https://doi.org/10.15517/ma.v29i3.32678

Most read articles by the same author(s)