Evaluation of agricultural fertilizers on the productivity of microalgae Chlorella sorokiniana.

Authors

  • Ana Margarita Silva-Benavides Universidad de Costa Rica, Escuela de Biología, Centro de Investigación en Ciencias del Mar y Limnología, San Pedro, San José

DOI:

https://doi.org/10.15517/am.v27i2.24361

Keywords:

chlorophyll fluorescence, microalgal productivity, total nitrogen, magnesium sulfate.

Abstract

The aim of this study was to evaluate the productivity of microalgae Chlorella sorokiniana UTEX 1230 with two different foliar fertilizers used in agriculture and the comparison with the nutrient medium Kolwitz (K3).Variables assessed were cell growth, productivity, chlorophyll concentration, fluorescence (Fv/Fm), proteins, and carbohydrates. Two commercial fertilizers with NPK 20-20-20 and NPK 22-10-7 formula were used as nutrient media. The study was conducted at the Institute of Ecosystem Studies, Florence, Italy, in 2014. Each experiment was repeated five times using three replicates in each experiment under a light intensity of 150 μmol photons m2/s, temperature 28 °C and CO2/air (2:98v/v). The culture media were prepared by using the following fertilizers: 1) NPK 20-20-20 (1.00 g/l) + 0.27 g/l MgSO4.7H2O, 2) NPK 22-10-7 (+2 MgO) (1.00 g/l) + 0.27 g/l MgSO4.7H2O, 3) NPK 22-10-7 (+2 MgO) (1.00 g/l), 4) NPK 20-20-20 (1.00 g/l). The nutrient medium Kolwitz (K3) was used as a control. Higher cell concentrations, productivity, chlorophyll, fluorescence, proteins, and carbohydrates were obtained in cultures grown in the media prepared with magnesium sulfate (NPK 20-20-20 (1.00 g/l) + 0.27 g/l MgSO4.7H2O, and NPK 22-10-7 (+2 MgO) (1.00 g/l) + 0.27 g/l MgSO4.7H2O). Lower biomass growth was obtained in cultures lacking magnesium sulfate. Sulfide and magnesium, as well as the amounts of urea and ammonia in the chemical composition of each fertilizer, had a positive effect on the culture growth and productivity.

 

Downloads

Download data is not yet available.

References

Abalde, J., A. Cid, P. Fidalgo, E. Torres, y C. Herrero. 1995. Microalgas: cultivos y aplicaciones. La Coruña: Universidade Da Coruña, ESP.

Acién, F.G., J. M. Fernández, J.J. Magán, and E. Molina. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30: 1344-1353.

Arredondo, B.O., y D. Voltolina. 2007. Concentración, recuento celular y tasa de crecimiento. En: B. Arredondo, y D. Voltolina, editores, Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, CA, USA. p. 17-26.

Becerra-Dórame, M., J. A. López, F. Enríquez, N. Huerta, D. Voltolina, I. Osuna, and G. Izaguirre. 2010. The effect of initial cell and nutrient concentrations on the growth and biomass production of outdoor cultures of Dunaliella sp. Ann. Bot. Fennici. 47:109-112.

Becker, E. 1995. Microalgae: Biotechnology and microbiology. Cambridge University Press, USA.

Becker, W. 2013. Microalgae for human and animal nutrition. In: A. Rhichmond, and Q. Hu, editors, Handbook of microalgal culture: applied phycology and biotechnology. John Wiley y Sons, Ltd. GBR. p.

-503.

Borowizka, M.A. 1999. Economic evaluation of microalgal processes and products. In: Z. Cohen, editor, Chemicals from microalgae. T.J. International Ltd, Padstow, GBR. p. 387-409.

Borowitzka, M.A. 2005. Culturing microalgae in outdoor ponds. En: R.A. Andersen, editor, Algal culturing techniques. Elsevier Academic Press, CA, USA. p. 205-218.

Borowitzka, M. 2013. High-value products from microalgaetheir development and commercialization. J. Appl. Phycol. 25:743-756.

Concas, A., G. Lutzu, M. Pisu, and G. Cao. 2012. Experimental analysis and novel modeling of semibatch photobioreactorsoperated with Chlorella vulgaris and fed with 100% (v/v) CO2. Chem. Eng. J. 213:203-213.

Converti, A., A. Casazza, E. Ortiz, P. Perego, and Del Borghi. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48:1146-1151.

Dubois, M., K. Guilles, J. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28:350-356.

Fábregas, J., L. Toribio, J. Abalde, B. Cabezas, and C. Herrero. 1987. Approach to biomass production of the marine microalgae Tetraselmis suecica (Kylin) using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures. Aquacult. Eng. 6:141-150.

Grobbelar, J. 2013. Inorganic algal nutrition. In: A. Rhichmond, and Q. Hu, editors, Handbook of microalgal culture: applied phycology and biotechnology. John Wiley y Sons, Ltd. GBR. p. 123-133.

Jad-Allah, K. 2012. Development of cheap and simple culture medium for the microalgae Nannochloropsis sp. based on agricultural grade fertlilizers available inthe local market of Gaza Strip (Palestine). J. Al Azhar University Gaza (Natural Sci.) 14:61-76.

Krause, G.H., and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology. 2. Interpretation of fluorescence signals. Photosynth Res. 5:139-157.

Lee, Y., W. Chen, H. Shen, D. Han, Y. Li, H. Jones, J. Timlin, and Q. Hu. 2013. Basic culturing and analytical measurement techniques. In: A. Rhichmond, and Q. Hu, editors, Handbook of microalgal culture: applied phycology and biotechnology. John Wiley y Sons, Ltd. GBR. p. 37-68.

Lichenthaler, H. 1987. Chlorophyll and carotenoids: pigments of photosynthetic membranes. Methods Enzymol. 148:350-82.

Liu, J., and Q. Hu. 2013. Chlorella: industrial production of cell mass and chemicals. In: A. Rhichmond, and Q. Hu, editors, Handbook of microalgal culture: applied phycology and biotechnology. John Wiley y Sons, Ltd. GBR. p. 329-338.

Lowry, O., and N. Rosenbrough. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-272.

Masojídek, J., G. Torzillo, and M. Koblízek. 2013. Photosynthesis in microalgae. In: A. Rhichmond, and Q. Hu, editors, Handbook of microalgal culture: applied phycology and biotechnology. John Wiley y Sons, Ltd. GBR. p. 21-36.

Mellis, A., L. Zhang, M. Forestier, M. Ghirardi, and M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122:127-136.

Molina, G.E., H. Belarbi, F.G. Acién, A. Robles, and Y. Chisti. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotech. Adv. 20:491-515.

Nieves, M., D. Voltolina, M. Sapién, H. Gerhardus, A.L. Robles, and M. Villa. 1996. Culturing microalgae with agricultural fertilizers. Riv. Ital. Acquacoltura 3:81-84.

Norsker, N.H., M.J. Barbosa, M. Vermue and R.H. Wijffels. 2011. Microalgal production - A close look at the economics. Biotechnol. Adv. 29:24-27.

Ortiz, M., C. Cortés, J. Sánchez, J. Padilla, y A.M. Otero. 2011. Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. ORINOQUIA 16:11-19.

Piña, P., A. Medina, M. Nieves, S. Leal, J.A. López, y M. Guerrero. 2007. Cultivo de cuatro especies de microalgas con diferentes fertilizantes utilizados en acuicultura. Rev. Invest. Mar. 28:225-236.

Richmond, A. 1999. Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Z. Cohen, editor, Chemicals from microalgae. T.J. International Ltd, Padstow, GRB. p. 353-386.

Rocha, J.M.S., J.E. García, and M.H. Henriques. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol. Eng. 20:237-242.

Sánchez, H., J. Juscamaita, J. Vargas, y R. Oliveros. 2008. Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecol. Apl. 7:149-158.

Schenk, P., A. Thomas-Hall, S. Stephens, U. Marx, J. Mussgnung, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 1:20-43.

Schubert, E. 2003. Nonmotile coccoid and colonial green algae. In: J.D. Wehr, and R. Sheath, editors, Freshwater algae of North America: ecology and classification. CA, USA. p. 253-307.

Silva, A.M., and G. Torzillo. 2012. Nitrogen and phosphorus removals by means of laboratory batch cultures of the microalga Chlorella vulgaris and the cyanobacterium Planktothrix isothrix grown as monoalgal and as cocultures. J. Appl. Phycol. 24:267-276.

Silva, A.M., G. Torzillo, J. Kopecky, and J. Masojıdek. 2013. Productivity and biochemical compositio of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomas. Bioenergy 54:115-122.

Simental, J.A, and M. Sánchez. 2003. The effect of agricultural fertilizer on growth rate of benthic diatoms. Aquacult. Eng. 27:265-272.

Simental, J.A., M.P. Sánchez, and J. Correa. 2001. Biochemical composition of benthic marine diatoms using as culture medium a common agricultural fertilizer. J. Shellfish Res. 20:611-617.

Tam, N., and Y.S. Wong. 1990. The comparison of growth and

nutrient removal efficiency of Chlorella pyrenoidosa

in settled and activated sewages. Environ. Pollut.

:93-108.

Tam, N., and Y.S. Wong. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57:45-50.

Tredici, M. 2010. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143-162.

Torzillo, G., P. Accolla, E. Pinzani, and J. Masojidek. 1996. In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stress in Spirulina cultures grown outdoors in photobioreactors. J. Appl. Phycol. 7:1-9.

Torzillo, G., C. Faraloni, M. Silva, J. Kpecky, and J. Masojidek. 2012. Photoacclimation of P. tricornutum (Bacillariophycea) cultures grown outdoors in photobioreactors and open ponds. Eur. J. Phycol. 47: 169-181.

Torzillo, G., and A. Vonshak. 2013. Environmental stress physiology with references to mass cultures. In: A. Richmond, editor, Handbook of microalgal mass cultures. Blackwell Science, River Street, USA. p. 90-113.

Valenzuela, E., F. Lafarga De La Cruz, R. Milán, y F. Núñez. 2005. Crecimiento, consumo de nutrientes y composición proximal de Rhodomonas sp. cultivada en medio F/2 y fertilizantes agrícolas. Cienc. Mar. 31:79-89.

Watanabe, M. 2005. Freshwater cultura media. In: R. Andersen, editor, Algal culturing techniques. Elsevier Academic Press, California, USA. p. 13-20.

Published

2016-06-20

How to Cite

Silva-Benavides, A. M. (2016). Evaluation of agricultural fertilizers on the productivity of microalgae Chlorella sorokiniana. Agronomía Mesoamericana, 27(2), 265–275. https://doi.org/10.15517/am.v27i2.24361