Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Microplastics in the sardine Sardinella aurita (Teleostei: Clupeidae) in Sucre, Venezuela
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

pollution;
marine litter;
global problems;
nutrition
contaminación;
basura marina;
problemática global;
alimentación

How to Cite

López-Marcano, J. J., García Marcano, E. A. ., & Marina Fermín, I. . (2023). Microplastics in the sardine Sardinella aurita (Teleostei: Clupeidae) in Sucre, Venezuela. Revista De Biología Tropical, 71(1), e55101. https://doi.org/10.15517/rev.biol.trop.v71i1.55101

Abstract

Introduction: The increasing presence of plastics in aquatic ecosystems has been considered as an emerging global environmental problem. Studies have shown that microplastics can be ingested by a variety of aquatic organisms. The natural variability and importance of the sardine resource are sufficient reasons to evaluate the presence of these particles in stomach contents, and thus generate information about the ingestion implications of these emerging contaminants. Objective: To evaluate the presence of microplastics in the stomach contents of sardines and their correlation with the physiological and reproductive condition of the fish studied. Methodology: We evaluated a total of 800 sardines between April and May 2022. We measured total length and weight, and determined the condition factor and the gonadosomatic index. We removed the digestive tract and weighed the stomach both empty and full, as well as the stomach contents to determine the repletion and emptiness index. We correlated the determined variables with the abundance of microplastics. We extracted microplastics and characterized them physically. Results: The filling index presented monthly differences with an average of 0.311. The average vacancy index was 0.276. The average abundance of microplastics was 3 066 items, with monthly differences and interaction with respect to sex and a frequency of appearance of 70.125 %, with a total of 2 402 fibers and 57 fragments. Black fibers were the most abundant (947 items). Low and positive correlations were found between the abundance of microplastics, the gonadosomatic index and the weight of the organisms. Conclusions: These results cannot be conclusive as to the consequences caused by this emerging pollutant. Further study is necessary, including laboratory tests with standardized methodologies.

Objective: To evaluate the presence of microplastics in the stomach contents of sardines and their correlation with the physiological and reproductive condition of the fish studied.
Methodology: A total of 800 sardines were evaluated between April and May 2022. The morphometric variables total length and weight were measured, the condition factor and the gonadosomatic index were determined. The digestive tract was removed and the weight of the full and empty stomach was determined, in addition to the weight of the stomach contents to determine the repletion and emptiness index. The determined variables were correlated with the abundance of microplastics. The stomach contents were processed to extract the microplastics and characterize them physically.
Results: The filling index presented significant monthly differences; his average was 0.311. The average vacancy index was 0.276. The average abundance of microplastics was 3,066 items, with monthly differences and interaction with respect to sex and a frequency of appearance of 70.125 %, with a total of 2,402 fibers and 57 fragments. Black fibers were the most abundant (947 items). Low and positive correlations were found between the abundance of microplastics and the gonadosomatic index.
Conclusions: These results cannot be conclusive when talking about the consequences caused by this emerging pollutant. It is necessary to deepen more on the subject, including laboratory tests with standardized methodologies.

https://doi.org/10.15517/rev.biol.trop..v71i1.55101
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Anderson, M. & Robinson, J. (2003). Generalized discriminant analysis based on distances. Australian & New Zealand Journal of Statistics, 45(1), 301–318.

Anderson, M., Gorley, R., & Clarke, K. (2008). Permanova+for primer: guide to software and statistical methods. Plymouth.

Avio, G., Gorbi, S., & Regoli, F. (2015). Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Marine Environmental Research, 111(1), 18–26.

Batel, A., Linti, F., Scherer, M., Erdinger, L., & Braunbeck, T. (2016). The transfer of benzo [a] pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment-CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35(7), 1656–1666.

Bermúdez-Guzmán, L., Alpízar-Villalobos, C., Gatgens-García, J., Jiménez-Huezo, G., Rodríguez-Arias, M., Molina, U., Villalobos, J., Paniagua, S. A., Vega-Baudrit, J. R., & Rojas, K. (2020). Microplastic ingestion by a herring Opisthonema sp., in the Pacific coast of Costa Rica. Regional Studies in Marine Science, 38(1), 101367.

Boyero, L., López-Rojo, N., Bosch, J., Alonso, A., Correa-Araneda, F., & Pérez, J. (2020). Microplastics impair amphibian survival, body condition and function. Chemosphere, 244, 125500.

Bucol, L., Romano, E., Cabcaban, S., Siplona, L., Madrid, G., Bucol, A., & Polidoro, B. (2020). Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Marine Pollution Bulletin, 150(1), 110685.

Cellamare, M., & Gómez, A. (2007). Alimentación de la sardina Sardinella aurita (Clupeidae) en el sureste de la isla de Margarita, Venezuela. Boletín del Instituto Oceanográfico de Venezuela, 46(1), 23–36.

Collard, F., Gasperi, J., Gabrielsen, G., & Tassin, B. (2019). Plastic particle ingestion by wild freshwater fish: A critical Review. Environmental Science & Technology, 53(22), 12974–12988.

Da Costa, A., & Malafaia, G. (2020). Ingestion of microplastics induces behavioral disorders in mice: a preliminary study on the effects of trophic transfer through tadpoles and fish. Journal of Hazardous Materials, 401(1), 123263.

Dos Santos, J., & Jobling, M. (1991). Gastric emptying in cod, Gadus morhua L.: emptying and retention of indigestible solids. Journal of Fish Biology, 38(2), 187–197.

Franco, L., & Bashirullah, K. (1992). Alimentación de la lisa (Mugil curema) del Golfo de Cariaco – Estado Sucre, Venezuela. Zootecnia Tropical, 10(2), 219–238.

Hernandez, E., Nowack B., & Mitrano, D. M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51, 7036–7046.

Huq, M. (2003). Estado del conocimiento biológico pesquero de la sardina (Sardinella aurita Valenciennes, 1847) en el Oriente de Venezuela. En Fréon, P., & Mendoza, J. (Eds.), La sardina (Sardinella aurita), su medio ambiente y explotación en el Oriente de Venezuela: una síntesis (pp. 331–356). IRD Editions, Colloques et Séminaires.

Hyslop, E. (1980). Stomach contents analysis a review of methods and their application. Journal of Fish Biology, 17(1), 411–429.

Iannacone, J., Principe, F., Minaya, D., Panduro, G., Carhuapoma M., & Alvariño, L. (2021). Microplásticos en peces marinos de importancia económica en Lima, Perú. Revista de Investigaciones Veterinarias del Perú, 32(2), 1–15.

Izquierdo, M., & Fernández-Palacios, H. (2004). Importancia de la nutrición en la reproducción de peces. ITEA, 100(3), 289296.

López-Marcano, J. (2023). Estudio de la presencia de microplásticos en el contenido estomacal y branquias de la sardina, Sardinella aurita Valenciennes, 1810 (Teleostei: Clupeidae), y evaluación de su dinámica reproductiva, durante la época de pesca del año 2022, en el estado sucre, Venezuela (Tesis de maestría). Universidad de Oriente, Venezuela.

Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054–4060.

Lusher, A. L., Hollman, P. C. H., & Mendoza-Hill, J. J. (2017). Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper No. 615, Rome, Italy.

Lusher, A., & Hernandez-Milian, G. (2018). Microplastic extraction from marine vertebrate digestive tracts, regurgitates and scats: A protocol for researchers from all experience levels. Bio-protocol, 8(1), 1–12.

Lusher, A., McHugh, M., & Thompson, R. (2013). Ocurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67, 94–99.

Mazurais, D., Ernande, B., Quazuguel, P., Severe, A., Huelvan, C., Madec, L., Mouchel, O., Soudant, P., Robbens, J., Huvet, A., & Zambonino-Infante, J. (2015). Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Marine Environmental Research, 112(A), 78–85.

Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50(1), 5800–5808.

Ory, N., Gallardo, C., Lenz, M., & Thiel, M. (2018). Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environmental Pollution, 240(1), 566– 573.

Pazos, R., Maiztegui, T., Colautti, D., Paracampo, A., & Gómez, N. (2017). Microplastics in gut contents of coastal freshwater fish from Río de la Plata estuary. Marine Pollution Bulletin, 122(1), 85–90.

PlasticsEurope. (2016). Plastics - the Facts 2016. http://www.plasticseurope.org/

Provencher, J., Bond, A., & Mallory, M. (2015). Marine birds and plastic debris in Canada: a national synthesis and a way for forward. Environmental Reviews, 23(1), 1–13.

R Core Team. (2016). R: a language and environment for statiscal computing. R Foundation for Statistical Computing. Vienna. Austria. https://www.R-project.org/

Ricker, W. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin - Fisheries Research Board of Canada, 191, 1–382.

Rosenkranz, P., Chaudry, Q., Stone, V., & Fernandes, T. (2009). A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environmental Toxicology and Chemistry, 28(10), 2142–2149.

Sruthy, S., & Ramasamy, E. (2017). Microplastic pollution in Vembanad Lake, Kerala, India: the first report of microplastics in lake and estuarine sediments in India. Environmental Pollution, 222, 315–322.

Stock, F., Kochleus, C., Spira, D., Brennholt, N., Bänsch-Baltruschat, B., Demuth, S., & Reifferscheid, G. (2020). Plastic in aquatic environments -Results of an international survey. Fundamental and Applied Limnology, 194(1), 67–76.

Takada, S. (2013). International pellet watch: Studies of the magnitude and spatial variation of chemical risks associated with environmental plastics. En J. Gabrys, G. Hawkins, & M. Michael (Eds.), Accumulation: The Material Politics of Plastic (pp. 184–207). Routledge.

Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., … Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B, 364, 2027–2045.

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science, 304, 838.

Thompson, R., Swan, S., Moore, C., & Vom Saal, F. (2009). Our plastic ages. Philosophical Transactions of the Royal Society B, 364, 1973–1976.

Tsikliras, A., & Antonopoulou, E. (2006). Reproductive biology of round sardinella (Sardinella aurita) in the north-eastern Mediterranean. Scientia Marina, 70(2), 281–290.

UNEP. (2011). UNEP Year book. Emerging issues in our global environment. United Nations Environment Programme, Nairobi, Kenia. http://hdl.handle.net/

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26, 12.

Wendt-Potthoff, K., & Gabel, F. (2020). Plastic in freshwater ecosystems. Fundamental and Applied Limnology, 194(1), 33–35.

Zar, H. (1974). Bioestatistical analysis. Prentice Hall. Biological Sciences Series.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical

Downloads

Download data is not yet available.