Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Embryogenesis, larval development, and post-settlement survival of the coral Orbicella annularis (Scleractinia: Merulinidae).
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

embryogenesis; coral restoration; assisted fertilization; settlement; crustose coralline algae; marine protected area.
embriogénesis; restauración coralina; fertilización asistida; asentamiento; algas coralináceas costrosas; área marina protegida.

How to Cite

Alvarado-Chacon, E. M., García-Ureña, R., Sierra-Escrigas, S. L., Garzón-Machado, M. A., Zárate-Arévalo, J. C., Sierra-Sabalza, N., Cely, C., & Rincón-Díaz, N. (2023). Embryogenesis, larval development, and post-settlement survival of the coral Orbicella annularis (Scleractinia: Merulinidae). Revista De Biología Tropical, 71(S1), e54793. https://doi.org/10.15517/rev.biol.trop.v71iS1.54793

Abstract

Introduction: Populations of the coral Orbicella annularis have shown low recruitment in the Caribbean. One of the demographic bottlenecks is the high mortality in the early stages of development. Detailed knowledge of the cycle and survival rates of these phases will allow us to assist in population recovery and reef restoration.

Objective: To describe the embryogenesis and larval stages obtained by assisted fertilization and measure the settlement and survival rates of larvae on artificial substrates, before being outplanted to the reef.

Methods: Six days after the full moon in September 2021, gamete bundles were collected from eight O. annularis colonies in Los Corales del Rosario and San Bernardo National Natural Park, Colombia and brought to the laboratory. Cross fertilization was carried out and embryonic and larval development were followed until larval settlement and survival was recorded until day 41. The larvae were kept in three tanks with filtered sea water with 126 tagged substrates, previously conditioned with crustose coralline algae. The substrates were then outplanted to the reef.

Results: The onset of embryonic development occurred 1.11 hAF (hours after fertilization), when cells showed signs of the first cleavage, and lasted until 104.59 hAF when they began to metamorphose. Larvae settlement was observed on the sixth day AF. Twenty-one days after fertilization, zooxanthellae were found. Post-settlement larval survival was 27.5 %.

Conclusions: In this first sexual propagation effort using O. annularis in Colombia, 1.4 % of competent larvae completed the entire development process. Although low survival rate, these results add to coral restoration efforts in the Caribbean in which species are assisted to increase the survival of corals in their early stages of development.

https://doi.org/10.15517/rev.biol.trop..v71iS1.54793
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Alvarado-Chacón, E. M., & Acosta, A. (2009). Population size-structure of the reef-coral Montastraea annularis in two contrasting reefs of a Marine Protected Area in the southern Caribbean Sea. Bulletin of Marine Science, 85(1), 61–76.

Alvarado-Chacón, E. M., Gómez-Lemos, L. A., Sierra-Sabalza, N. P., Hernández-Chamorro, A. M., Lozano-Peña, J. P., Valcárcel-Castellanos, C. A., Pizarro, V., García-Urueña, R., Zárate-Arévalo, J. C., & Rojas, J. A. (2020). Early life history of the caribbean coral Orbicella faveolata (Scleractinia: Merulinidae). Revista de Biología Tropical, 68(4), 1262–1274. https://doi.org/10.15517/RBT.V68I4.4080

Ball, E. E., Hayward, D. C, Reece-Hoyes, J. S, Hislop, N. R, Samuel, G., Saint, R., Peter, L., & Miller, D. J. (2002). Coral development: from classical embryology to molecular control. The International Journal of Developmental Biology, 46, 671–678.

Banaszak, A., Schutter, M., Guendulain-García, S., Mendoza-Quiroz, S., & Gómez-Campo, K. (2018). Guía práctica para la restauración con base en la producción de reclutas sexuales de corales con énfasis en Acropora palmata. Alianza Fundación Carlos Slim

Bhattacharya, D., Agrawal S., Aranda, M., Baumgarten, S., Belcaid, M., Drake, J. L., Erwin, D., Foret, S, Gates, R. D., Gruber, D. F., Kamel, B., Lesser, M. P., Levy, O., Liew, Y. J., MacManes, M., Mass, T., Medina, M., Mehr, S., Meyer, E., Price, D. C., ... Falkowski, P. G. (2016). Comparative genomics explains the evolutionary success of reef-forming corals. Elife, 5, e13288. https://doi.org/10.7554/eLife.13288

Bruckner, A. W., & Bruckner R. J. (2006). The recent decline of Montastraea annularis (complex) coral populations in western Curaçao: a cause for concern? Revista de Biología Tropical, 54(3), 45–58.

Calle-Triviño, J., Cortés-Useche, C., Sellares, R., & Arias-González, J. E. (2018). Assisted fertilization of threatened staghorn coral to complement the restoration of nurseries in Southeastern Dominican Republic. Regional Studies in Marine Science, 18, 129–134. https://doi.org/10.1016/j.rsma.2018.02.002

Cameron, K. A., & Harrison, P. L. (2020). Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-62366-4

Cetz-Navarro, N. P., Quan-Young, L. I., & Espinoza-Avalos, J. (2015). Morphological and community changes of turf algae in competition with corals. Scientific Reports, 5(1), 1–12. https://doi.org/10.1038/SREP12814

Chamberland, V. F., Petersen, D., Guest, J. R., Petersen, U., Brittsan, M., & Vermeij, M. J. A. (2017). New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17555-z

Chamberland, V. F., Snowden, S., Marhaver, K. L., Peterson, U., & Vermeij, M. J. A. (2016). The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs, 36, 83–94. https://doi.org/10.1007/s00338-016-1504-2

Chua, C. M., Leggat, W., Moya, A., & Baird, A. H. (2013) Temperature affects the early life history stages of corals more than near future ocean acidification. Marine Ecology Progress Series, 475, 85–92. https://doi.org/10.3354/meps10077

Connolly, S. R., & Baird, A. H. (2010). Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology, 91(12), 3572–3583. https://doi.org/10.1890/10-0143.1

Craggs, J., Guest, J., Bulling, M., & Sweet, M. (2019). Ex situ co-culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-49447-9

Davies, S. W., Strader, M. E., Kool, J. T., Kenkel, C. D., & Matz, M. V. (2017). Modeled differences of coral life-history traits influence the refugium potential of a remote Caribbean reef. Coral Reefs, 36, 913–925.

Doropoulos, C., Roff, G., Bozec, Y. M., Zupan, M., Werminghausen, J., & Mumby, P. J. (2016). Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecological Monographs, 86(1), 20–44. https://doi.org/10.1890/15-0668.1

Doropoulos, C., Vons, F., Elzinga, J., Ter Hofstede, R., Salee, K., Van Koningsveld, M., & Babcock, R. C. (2019). Testing industrial-scale coral restoration techniques: harvesting and culturing wild coral-spawn slicks. Frontiers in Marine Science. 6(658), 1–14. https://doi.org/10.3389/fmars.2019.00658

Edmunds, P. J., & Elahi, R. (2007). The demographics of a 15-year decline in cover of the Caribbean reef coral Montastraea annularis. Ecology Monographs, 77, 3–18.

Edwards, A. J. (2010). Reef rehabilitation manual. The Coral Reef Targeted Research and capacity building for management program.

Fritzenwanker, J. H, Genikhovich, G., Kraus, Y., & Technau, U. (2007). Early development and axis specification in the sea anemone Nematostella vectensis. Developmental Biology, 310, 264–279.

Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301(5635), 958–960. https://doi.org/10.1126/science.1086050

Gleason, D. & Hofmann, D. (2011). Coral larvae: From gametes to recruits. Journal of Experimental Marine Biology and Ecology, 408, 42–57. https://doi.org/10.1016/j.jembe.2011.07.025

Gouezo, M., Golbuu, Y., Fabricius, K., Olsudong, D., Mereb, G., Nestor, V., Wolanski, E., Harrison, P., & Doropoulos, C. (2019). Drivers of recovery and reassembly of coral reef communities. Proceedings of the Royal Society B: Biological Sciences, 286(1897), 20182908. https://doi.org/10.1098/rspb.2018.2908

Graham, E. M., Baird, A. H., Willis, B. L., & Connolly, S. R. (2013). Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia, 173(2), 431–438. https://doi.org/10.1007/s00442-013-2635-6

Hancock, J. R., Barrows, A. R., Roome, T. C., Huffmyer, A. S., Matsuda, S. B., Munk, N. J., Rahnke, S. A., & Drury, C. (2021). Coral husbandry for ocean futures: Leveraging abiotic factors to increase survivorship, growth, and resilience in juvenile Montipora capitata. Marine Ecology Progress Series, 657, 123–133. https://doi.org/10.3354/meps13534

Harrison, P. L., & Wallace, C. C. (1990) A review of reproduction, larval dispersal and settlement of scleractinian corals. In Z. Dubinsky (Ed.), Ecosystems of the World 25 Coral Reefs (pp. 133–196). Elsevier.

Hayashibara, T., Ohike, S., & Kakinuma, Y. (1997). Embryonic and larval development and planula metamorphosis of four gamete-spawning Acropora: Anthozoa, Scleractinia. [Paper presentation]. In H. A. Lessios & I. G. Macintyre (Eds.) Proceedings of the 8th International Coral Reef Symposium (Vol. 2, pp. 1231–1236) [Symposium]. 8th International Coral Reef Symposium, Ciudad de Panamá, Panamá.

Howlett, L., Camp, E. F., Edmondson, J., Henderson, N., & Suggett, D. J. (2021). Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE, 16, 1–15. https://doi.org/10.1371/journal.pone.0244961

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929–933. https://doi.org/10.1126/science.1085046

Jones, G. P., Almany, G. R., Russ, G. R., Sale, P. F., Steneck, R. S., Van Oppen, M. J. H., & Willis, B. L. (2009). Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs, 28(2), 307–325. https://doi.org/10.1007/s00338-009-0469-9

Jorissen, H., Galand, P. E., Bonnard, I., Meiling, S., Raviglione, D., Meistertzheim, A. L., Hédouin, L., Banaigs, B., Payri, C. E. & Nugues, M. M. (2021). Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Scientific Reports, 11(1), 1–11.

Levitan, D. R., Boudreau, W., Jara, J., & Knowlton, N. (2014). Long-term reduced spawning in Orbicella coral species due to temperature stress. Marine Ecology Progress Series, 515, 1–10.

Marhaver, K., Chamberland, V., & Fogarty, N. (2017). Caribbean Coral Spawning for Research and Restoration: How to raise larvae and outplant settlers without shedding (a lot of) blood and tears. TNC Coral Restoration Webinar.

Marhaver, K. L., Vermeij, M. J., & Medina, M. (2015). Reproductive natural history and successful juvenile propagation of the threatened Caribbean Pillar Coral Dendrogyra cylindrus. BMC Ecology, 15(1), 1–12. https://doi.org/10.1186/S12898-015-0039-7/TABLES/1

Martinez, S., & Abelson, A. (2013). Coral recruitment: the critical role of early post-settlement survival. ICES Journal of Marine Science, 70(7), 1294–1298. https://doi.org/10.1093/icesjms/fst035

Mason, B., Beard, M., & Miller, M. W. (2011). Coral larvae settle at a higher frequency on red surfaces. Coral Reefs, 30(3), 667–676. https://doi.org/10.1007/s00338-011-0739-1

Miller, M. W., Bright, A. J., Pausch, R. E., & Williams, D. E. (2020). Larval longevity and competency patterns of Caribbean reef-building corals. PeerJ, 8, e9705. https://doi.org/10.7717/peerj.9705

Miller, M. W., Latijnhouwers, K. R. W., Bickel, A., Mendoza-Quiroz, S., Schick, M., Burton, K., & Banaszak, A. T. (2021). Settlement yields in large-scale in situ culture of Caribbean coral larvae for restoration. Restoration Ecology, 30(3), e13512. https://doi.org/10.1111/REC.13512

Miller, K., & Mundy, C. (2003). Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs, 22(2), 99–106. https://doi.org/10.1007/s00338-003-0290-9

Morse, A. N. C., Iwao, K., Baba, M., Shimoike, K., Hayashibara, T., & Omori, M. (1996). An ancient chemosensory mechanism brings new life to coral reefs. Biological Bulletin, 191, 149–154.

Okubo, N., Mezaki, T., Nozawa, Y., Nakano, Y., Lien, Y. T., Fukami, H., Hayward, D. C., & Ball, E. E. (2013). Comparative embryology of eleven species of stony corals (Scleractinia). PLOS ONE, 8(12), e84115. https://doi.org/10.1371/JOURNAL.PONE.0084115

Okubo, N., & Motokawa, T. (2007) Embryogenesis in the reef-building coral Acropora spp. Zoological Science, 24, 1169–1177.

Page, C. A., Muller, E. M., & Vaughan, D. E. (2018). Microfragmenting for the successful restoration of slow growing massive corals. Ecological Engineering, 123, 86–94.

Peng, L., Liang, X., Xu, J., Dobretsov, S., & Yang, J. (2020). Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-59506-1

Perry, C. T., & Alvarez-Filip, L. (2019). Changing geo-ecological functions of coral reefs in the Anthropocene. Functional Ecology, 33, 976–988. https://doi.org/10.1111/1365-2435.13247

Pollock, F. J., Sefano, M. K., van de Water, J. A., Davies, S. W., Margaux, H., Torda, G., Matz, M. V, Beltran, V. H., Buerger, P., Puill-Stephan, E., Abrego, D., Bourne, D. G., & Willis, B. L. (2017). Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5:e3732 https://doi.org/10.7717/peerj.3732

Rada-Osorio, D., Gómez-Lemos L. A., & García-Urueña, R. (2022). Early development of the threatened coral Acropora cervicornis. Hydrobiologia, 849, 2477–2486 https://doi.org/10.1007/s10750-022-04838-4

Rahnke, S., Hancock, J., Munk, N., Caruso, C., & Drury, C. (2022). Optimizing sexual reproduction of Montipora capitata for restoration: effects of abiotic conditions and light acclimation on juvenile survival and growth. Marine Ecology Progress Series, 691, 41–54. https://doi.org/10.3354/meps14064

Rakka, M., Godinho, A., Orejas, C., & Carreiro-Silva, M. (2021). Embryo and larval biology of the deep-sea octocoral Dentomuricea aff. meteor under different temperature regimes. PeerJ, 9, e11604 http://doi.org/10.7717/peerj.11604

Randall, C. J., Negri, A. P., Quigley, K. M., Foster, T., Ricardo, G. F., Webster, N. S., Bay, L. K., Harrison, P. L., Babcock, R. C., & Heyward, A. J. (2020). Sexual production of corals for reef restoration in the anthropocene. Marine Ecology Progress Series, 635, 203–232. https://doi.org/10.3354/MEPS13206

Randall, C. J., & Szmant, A. M. (2009). Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). The Biological Bulletin, 217(3), 269–282.

Restrepo, J., & Alvarado, E. (2011). Assessing major environmental issues in the Caribbean and pacific coasts of Colombia, South America: an overview of fluvial fluxes, coral reef degradation, and mangrove ecosystems impacted by river diversion. In E. Wolanski, & D. McLusky (Eds.), Treatise on estuarine and coastal science (pp. 289–314). Academic Press.

Ricardo, G. F., Harper, C. E., Negri, A. P., Luter, H. M., Wahab, M. A. A., & Jones, R. J. (2020). Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Science of The Total Environment, 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079

Ritson-Williams, R., Arnold S. N., Fogarty, N. D., Steneck, R. S., Vermeij, M. J., & Paul, V. J. (2009). New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contribution in Marine Science, 38, 437–457. https://doi.org/10.5479/si. 01960768.38.437

Ritson-Williams, R., Arnold, S. N., & Paul, V. J. (2016) Patterns of larval settlement preferences and post-settlement survival for seven Caribbean corals. Marine Ecology Progress Series, 548, 127–138. https://doi.org/10.3354/meps11688

Ritson-Williams, R., Arnold, S. N., Paul, V. J., & Steneck, R. S. (2014) Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs, 33, 59–66. https://doi.org/10.1007/s00338- 013-1113-2

Ritson-Williams, R., Paul, V. J., Arnold, S. N., & Steneck, R. S. (2010). Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and Acropora cervicornis. Coral Reefs, 29, 71–81.

Rogers, C. S., Muller, E. M., Spitzack, A., & Miller, J. (2008) The future of coral reefs in the US Virgin Islands: Is Acropora palmata more likely to recover than Montastraea annularis complex?. [Paper presentation]. In B. Riegl & R.E. Dodge. (Eds) Proceeding 11th International Coral Reef Symposium (Vol. 7, 226–230). 11th International Coral Reef Symposium, Florida, United States.

Szmant, A. M., & Miller, M. W. (2006). Settlement preferences and post-settlement mortality of laboratory cultured and settled larvae of the Caribbean hermatypic corals Montastraea faveolata and Acropora palmata in the Florida Keys, USA. [Paper presentation]. In P. M. Glynn & M. Pichon. (Eds). Proceedings of 10th International Coral Reef Symposium (Vol. 49, pp. 43–49). 10th International Coral Reef Symposium, Okinawa, Japan.

Tebben, J., Motti, C. A., Siboni, N., Tapiolas, D. M., Negri, A. P., Schupp, P. J., Kitamura, M., Hatta, M., Steinberg, P. D., & & Harder, T. (2015). Chemical mediation of coral larval settlement by crustose coralline algae. Scientific reports, 5(1), 1–11.

Technau, U. (2020). Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians. Mechanisms Development, 163, 103628. https://doi.org/10.1016/j.mod.2020.103628

UICN (Unión Internacional para la Conservación de la Naturaleza). (2022). Unión Internacional para la conservación de la naturaleza informe anual. Unión Internacional para la Conservación de la Naturaleza.

Van Woesik, R., Scott, W. J., & Aronson, R. B. (2014). Lost opportunities: Coral recruitment does not translate to reef recovery in the Florida Keys. Marine Pollution Bulletin, 88(1–2), 110–117 http://dx.doi.org/10.1016/j.marpolbul.2014.09.017

Vega-Thurber, R., Burkepile, D., Fuchs, C., Shantz, A., McMinds, R., & Zaneveld, J. (2013). Chronic nutrient enrichment causes increased coral disease prevalence and severity. Global Change Biology, 20, 544–554.

Vermeij, M. J. A., Chamberland, V. F., & Marhaver, K. L. (2021). Coral Spawning Predictions, Southern Caribbean 2007–2021. Caribbean Marine Biological Institute, Curacao.

Vermeij, M. J. A., Fogarty, N. D., & Miller, M. W. (2006). Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Marine Ecology Progress Series, 310, 119–128.

Vermeij, M. J., & Sandin, S. A. (2008). Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology, 89, 1994–2004.

Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega-Thurber, R., & S. A. Sandin (2009). Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia, 159, 325–336. https://doi.org/10.1007/s00442-008-1223-7.

Wilson, J. R., & Harrison, P. L. (1998). Settlement-competency periods of larvae of three species of scleractinian corals. Marine Biology, 131, 339–345.

Ying, H., Cooke, I., Sprungala, S., Wang, W., Hayward, D. C., Tang, Y., Huttley, G., Ball, E. E., Foret, S., & Miller, D. J. (2018). Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biology, 19, 1–24. https://doi.org/10.1186/s13059-018-1552-8.

Yuan, D. C, Nakanishi, N, Jacobs, D. J, & Hartenstein, V. (2008). Embryonic development and metamorphosis of the scyphozoan Aurelia. Development Genes and Evolution, 218, 525–539.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.