Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Functional traits of fruits of particular importance for seed dispersers in the tropical dry forest
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Supplementary Files



interaction networks
plant-animal interactions
redes de interacción
interacciones planta-animal

How to Cite

Acevedo-Quintero, J. F., Zamora-Abrego, J. G., Chica-Vargas, J. P., & Mancera-Rodríguez, N. J. (2023). Functional traits of fruits of particular importance for seed dispersers in the tropical dry forest. Revista De Biología Tropical, 71(1), e52288.


Introduction: Frugivory is a pivotal ecological process for the structure and regeneration of forests. Particularly in the tropics, where the diversity of frugivorous animals and plants is high, interspecific relationships are complex generating interaction networks where species play differential functional roles. Objective: To identify which are the most ecologically important plant species in two interaction networks in a Colombian dry forest and to determine which functional traits of the fruits explain this importance. Methods: The plant importance index (PII) was calculated based on the frugivore species (birds and mammals) relevance, in networks structure, with which each plant species interacts. This relevance is directly related to the animal’s potential to be an effective seed disperser. Then, using generalized linear models (GLM), it was evaluated which fruits functional traits (size, color, stratum, type of pulp) explain the PII. Results: Species of the genera Miconia, Ficus, Cecropia, Bursera, Casearia and Trichilia are in the among most important plants. These genera have been previously identified as important resources for frugivores in the tropics. Particularly in this work, we identified that plants with small-size, red and fleshy fruits benefit the best potential seed dispersers. Conclusions: The high PII values variation ​​suggests that the set of frugivore species benefited by each plant species has a differential contribution to the ecological processes derived from seed dispersal. This information is relevant for the species selection with traits that favor the functional forests recovery through ecological restoration programs of threatened ecosystems such as the tropical dry forest (bs-T).
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))


Acevedo‐Quintero, J. F., Zamora‐Abrego, J. G., & García, D. (2020). From structure to function in mutualistic interaction networks: Topologically important frugivores have greater potential as seed dispersers. Journal of Animal Ecology, 89(9), 2181–2191.

Aguiar Jr, A., Barbosa, R. I., Barbosa, J. B., & Mourão Jr, M. (2014). Invasion of Acacia mangium in Amazonian savannas following planting for forestry. Plant Ecology & Diversity, 7(1-2), 359–369.

Almazán-Núñez, R. C., Alvarez-Alvarez, E. A., Sierra-Morales, P., & Rodríguez-Godínez, R. (2021). Fruit size and structure of zoochorous trees: Identifying drivers for the foraging preferences of fruit-eating birds in a Mexican successional dry forest. Animals, 11(12), 3343.

Almeida-Neto, M., Guimarães, P. R. J., Loyota, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227–1239.

Baker, H. G., Baker, I., & Hodges, S. A. (1998). Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559–586.

Ballesteros-Correa, J., & Linares-Arias, J. C. (2015). Fauna de Córdoba, Colombia. Fondo Editorial Universidad de Córdoba

Bascompte, J., & Jordano, P. (2007). Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38(1), 567–593.

Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9383–9387.

Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018–1020.

Blendinger, P. G., Loiselle, B. A., & Blake, J. G. (2008). Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia, 158, 273–283.

Blendinger, P. G., Martín, E., Osinaga Acosta, O., Ruggera, R. A., & Aráoz, E. (2016). Fruit selection by Andean forest birds: influence of fruit functional traits and their temporal variation. Biotropica, 48(5), 677–686.

Camara, B., & Brangeon, J. (1981). Carotenoid metabolism during chloroplast to chromoplast transformation in Capsicum annuum fruit. Planta, 151, 359–364.

Clark, E. J. (2012). Influence of climate, fruit availability and nutritional content on bird selection of non-native, invasive (Frangula alnus) and native (Prunus serotina) fruit in eastern Massachusetts (Tesis de Maestría). Northeastern University, Estados Unidos de América.

Dáttilo, W., Lara-Rodríguez, N., Jordano, P., Guimarães, P. R., Thompson, J. N., Marquis, R. J., Medeiros, L. P., Ortiz-Pulido, R., Marcos-García, R. A., & Rico-Gray, V. (2016). Unravelling Darwin's entangled bank: Architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences, 283(1843), 20161564.

de Oliveira, A. C. P., Nunes, A., Rodrigues, R. G., & Branquinho, C. (2020). The response of plant functional traits to aridity in a tropical dry forest. Science of the total environment, 747, 141177.

Donoso, I., García, D., Rodríguez-Pérez, J., & Martínez, D. (2016). Incorporating seed fate into plant–frugivore networks increases interaction diversity across plant regeneration stages. Oikos, 125(12), 1762–1771.

Dormann, C. F., Frund, J., Bluthgen, N., & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2(1), 7–24

Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90–98.

Estrada, E. (2007). Characterization of topological keystone species. Local, global and ‘meso-scale’ centralities in food webs. Ecological Complexity, 4(1-2), 48–57.

Etter, A., Pérez, A. A., Saavedra, K., Amaya, A. V., Cortés, J., & Arévalo, P. (2020). Ecosistemas colombianos: amenazas y riesgos: una aplicación de la Lista Roja de Ecosistemas a los ecosistemas terrestres continentales. Editorial Pontificia Universidad Javeriana.

Farwig, N., & Berens, D. G. (2012). Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic and Applied Ecology, 13, 109–115.

Francis, J. K. (2002). Acacia mangium Willd. Tropical trees seed manual. USDA Forest Service.

Fricke, E. C., Bender, J., Rehm, E. M., & Rogers, H. S. (2018). Functional outcomes of mutualistic network interactions: A community-scale study of frugivore gut passage on germination. Journal of Ecology, 107, 757–767.

Galeano, G., & Bernal, R. (2010). Palmas de Colombia: Guía de campo. Universidad Nacional de Colombia.

García, D., Donoso, I., & Rodríguez-Pérez, J. (2018). Frugivore biodiversity and complementarity in interaction networks enhance landscape-scale seed dispersal function. Functional Ecology, 32(12), 2742–2752.

Herrera, C. M. (1987). Vertebrate‐dispersed plants of the Iberian Peninsula: a study of fruit characteristics. Ecological monographs, 57(4), 305–331.

Jordano, P. (2014). Fruits and frugivory. In R. S. Gallagher (Ed.), Seeds: The ecology of regeneration in plant communities (pp. 18–61). CAB International.

Kessler-Rios, M. M., & Kattan, G. H. (2012). Fruits of Melastomataceae: phenology in Andean forest and role as a food resource for birds. Journal of Tropical Ecology, 28, 11–21

Lázaro, A., Gómez-Martínez, C., Alomar, D., González-Estévez, M. A., & Traveset, A. (2019). Linking species-level network metrics to flower traits and plant fitness. Journal of Ecology, 108(4), 1287–1298.

Maruyama, P. K., Melo, C., Pascoal, C., Vicente, E., Fernandes-Cardoso, J. C., Garcia Brito, V. L., & Oliveira, P. E. (2019). What is on the menu for frugivorous birds in the Cerrado? Fruiting phenology and nutritional traits highlight the importance of habitat complementarity. Acta Botanica Brasilica, 33, 572–583.

McKey, D. (1975). The ecology of coevolved seed dispersal systems. In L. E. Gilbert & P. H. Raven (Eds.), Coevolution of animals and plants (pp. 159–191). University of Texas Press.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). Academic Press.

Mello, M. A. R., Rodrigues, F. A., Costa, L. D. F., Kissling, W. D., Şekercioğlu, Ç. H., Marquitti, F. M. D., & Kalko, E. K. V. (2015). Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos, 124, 1031–1039.

Messeder, J. V. S., Guerra, T. J., Dáttilo, W., & Silveira, F. A. (2020). Searching for keystone plant resources in fruit‐frugivore interaction networks across the Neotropics. Biotropica, 52(5), 857–870.

Messeder, J. V. S., Guerra, T. J., Pizo, M. A., Blendinger, P. G., & Silveira, F. A. (2022). Seed Dispersal Ecology in Neotropical Melastomataceae. In R. Goldenberg, F. A. Michelangeli & F. Almeda (Eds.), Systematics, Evolution, and Ecology of Melastomataceae (pp. 735–759). Springer.

Messeder, J. V. S., Silveira, F. A., Cornelissen, T. G., Fuzessy, L. F., & Guerra, T. J. (2021). Frugivory and seed dispersal in a hyperdiverse plant clade and its role as a keystone resource for the Neotropical fauna. Annals of Botany, 127(5), 577–595.

Moermond, T. C., & Denslow, J. S. (1985). Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs, 36, 865–897.

Moran, C., & Catterall, C. P. (2010). Can functional traits predict ecological interactions? A case study using rain forest frugivores and plants in Australia. Biotropica, 42(3), 318–326.

Muñoz, M. C., Schaefer, H. M., Böhning-Gaese, K., & Schleuning, M. (2017). Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos, 126(6), 823–832.

Naniwadekar, R., Chaplod, S., Datta, A., Rathore, A., & Sridhar, H. (2019). Large frugivores matter: Insights from network and seed dispersal effectiveness approaches. Journal of Animal Ecology, 88(8), 1250–1262.

Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891–19896.

Ordano, M., Blendinger, P., Lomáscolo, S., Chacoff, N., Sánchez, M., Montellano, G., Jiménez, J., Ruggera, R., & Valoy, M. (2017). The role of trait combination in the conspicuousness of fruit display among Bird-dispersed plants. Journal of Engineering and Applied Sciences, 12(10), 3218–3221.

Peres, M. K. (2011). Diásporos do Cerrado atrativos para fauna: chave interativa, caracterização visual e relações ecológicas (Tesis de Maestría). Universidade de Brasília, Brasil.

Ramos-Robles, M., Dáttilo, W., Díaz-Castelazo, C., & Andresen, E. (2018). Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest. The Science of Nature, 105(3), 1–11.

Rodríguez-Godínez, R., Sánchez-González, L. A., del Coro Arizmendi, M., & Almazán-Núñez, R. C. (2022). Bursera fruit traits as drivers of fruit removal by flycatchers. Acta Oecologica, 114, 103811.

Rohr, R. P., Saavedra, S., & Bascompte, J. (2014). On the structural stability of mutualistic systems. Science, 345(6195), 1253497.

Saavedra, S., Stouffer, D. B., Uzzi, B., & Bascompte, J. (2011). Strong con tributors to network persistence are the most vulnerable to extinction. Nature, 478(7368), 233–235.

Schleuning, M., Blüthgen, N., Flörchinger, M., Braun, J., Schaefer, H. M., & Böhning-Gaese, K. (2011). Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology, 92(1), 26–36.

Schaefer, H. (2011). Why fruits go to the dark side. Acta Oecologica, 37(6), 604–610.

Schaefer, H. M., & Schmidt, V. (2004). Detectability and content as opposing signal characteristics in fruits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S370–S373.

Sebastián‐González, E., Pires, M. M., Donatti, C. I., Guimarães Jr, P. R., & Dirzo, R. (2017). Species traits and interaction rules shape a species‐rich seed‐dispersal interaction network. Ecology and Evolution, 7(12), 4496–4506.

Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arachchige, C., Arppe, A., Baddeley, A., Barton, K., Bolker, B., Borchers, H. W., Caeiro, F., Champely, S., Chessel, D., Chhay, L., Cooper, N., Cummins, C., Dewey, M., Doran, H. C., … Zeileis, A. (2019). DescTools: Tools for descriptive statistics (Version

Sinnott‐Armstrong, M. A., Downie, A. E., Federman, S., Valido, A., Jordano, P., & Donoghue, M. J. (2018). Global geographic patterns in the colours and sizes of animal‐dispersed fruits. Global Ecology and Biogeography, 27(11), 1339–1351.

Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140, 637–646

Stournaras, K., Lo, E., Böhning-Gaese, K., Cazetta, E., Dehling, D., Schleuning, M., Caswell, M., Stoddard, M., Donoghue, M., Prum, R., & Schaefer, H. (2013). How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 198(2), 617–629.

Snow, D. W. (1981). Tropical frugivorous birds and their food plants: a world survey. Biotropica, 13(1), 1–14.

Traveset, A., & Richardson, D. M. (2014). Mutualistic interactions and biological invasions. Annual Review of Ecology, Evolution, and Systematics, 45, 89–113.

Tylianakis, J. M., Laliberté, E., Nielsen, A., & Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143(10), 2270–2279.

Valido, A., Schaefer, H. M., & Jordano, P. (2011). Colour, design and reward: phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology, 24(4), 751–760.

Vidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., & Guimarães Jr., P. R. (2014). Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 95(12), 3440–3447.

Villareal, H., Alvarez, M., Cordoba, S., Escobar, F., Fagua, G., Gast, F., & Mendoza, H. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Voigt, F., Bleher, B., Fietz, J., Ganzhorn, J., Schwab, D., & Böhning-Gaese, K. (2004). A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia, 141(1), 94–104.

Wheelwright, E. E. (1985). Fruit size, gape-width, and the diets of fruit-eating birds. Ecology, 66(663), 808–819.

Wheelwright, N. T. (1988). Fruit-eating birds and bird-dispersed plants in the tropics and temperate zone. Trends in ecology & evolution, 3(10), 270–274.

Whittaker, R. J., & Cottee-Jones, H. E. W. (2012). The keystone species concept: a critical appraisal. Frontiers of Biogeography, 4(3), 183–193.

Wien, H. C. (1997). The cucurbits: cucumber, melon, squash and pumpkin. In Wien, H. C. (Ed.), The Physiology of Crops (pp.345–386). CAB International.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical


Download data is not yet available.