Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Efecto de factores sociodemográficos en la mortalidad del COVID-19 en Costa Rica: un enfoque geográfico
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

COVID-19
factores socio-demográficos
modelos lineales generalizados (GLM)
regresión de Poisson
regresión ponderada geográficamente (GWR)
Costa Rica
COVID-19
socio-demographic factors
generalized linear models (GLM)
Poisson regression
geographically weighted regression (GWR)
Costa Rica.

How to Cite

Bonilla-Carrión, R. ., Evans-Meza, R., & Salvatierra-Durán, R. (2023). Efecto de factores sociodemográficos en la mortalidad del COVID-19 en Costa Rica: un enfoque geográfico. Revista De Biología Tropical, 71(1), e51679. https://doi.org/10.15517/rev.biol.trop.v71i1.51679

Abstract

Introduction: The coronavirus disease (COVID-19) has spread among the population of Costa Rica and has had a great world impact. However, there are important geographic differences in mortality from COVID-19 between the different regions in the world and within Costa Rica. Objective: The main objective of this article was to explore the effect of some sociodemographic factors on COVID-19 mortality in the cantons of Costa Rica, from a geographical perspective. Methods: Data on mortality from COVID-19 and sociodemographic information were obtained for the cantons of Costa Rica. The classical epidemiological Poisson regression model of the family of generalized linear models (GLM) is compared with the geographically weighted regression model (GWR). Results: Compared to the GLM regression model, a significantly lower Akaike Information Criterion (AIC) was obtained in the GWR model (927.1 in GLM versus 358.4 in GWR). The cantons with a higher population density, higher material well-being, lower number of population by health service units and that are located near the Pacific coasts of Costa Rica had a higher risk of mortality from COVID-19. Conclusions: There are potential effects of sociodemographic factors on COVID-19 mortality, however the findings and methodology of this study could guide other countries to help a better understanding of the local transmission of COVID-19 and design a focused and specific intervention strategy. for those countries.

https://doi.org/10.15517/rev.biol.trop..v71i1.51679
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Blume, J. D., Su, L., Olveda, R. M., & McGarvey, S. T. (2007). Statistical evidence for GLM regression parameters: a robust likelihood approach. Statistics in Medicine, 26(15), 2919–2936. https://doi.org/10.1002/sim.2759

Bonilla-Carrión, R. (2022). Guatemala: Análisis geoestadístico del COVID-19 en el primer año de pandemia. Revista Médica (Colegio de Médicos y Cirujanos de Guatemala), 161(1), 2–7. https://doi.org/10.36109/rmg.v161i1.474

Bonilla-Carrión, R., & Zapata-Quintanilla, E. (2021). Análisis geoespacial del COVID-19 en Honduras a los 18 meses de pandemia. Revista Médica (Colegio de Médicos y Cirujanos de Guatemala), 160(3), 212–223. https://doi.org/10.36109/rmg.v160i3.448

Bonilla-Carrión, R., Evans-Meza, R., & Salvatierra-Durán, R. (2021). Análisis geográfico de la morbilidad del COVID-19 en Costa Rica, 2020-2021. Revista Hispanoamericana de Ciencias de la Salud, 7(1), 3–10. https://doi.org/10.56239/rhcs.2021.71.468

Carhuapoma-Yance, M., Apolaya-Segura, M., Valladares-Garrido, M. J., Failoc-Rojas, V. E., & Díaz-Vélez, C. (2021). Índice desarrollo humano y la tasa de letalidad por Covid-19: Estudio ecológico en América. Revista Del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo, 14(3), 362–366. https://doi.org/10.35434/rcmhnaaa.2021.143.1258

Carozzi, F. (2020). Urban density and covid-19. SSRN Electronic Journal, 13440. https://doi.org/10.2139/ssrn.3643204

Carr, D. (2020). Sharing research data and findings relevant to the novel coronavirus (COVID-19) outbreak. Wellcome Trust. https://wellcome.ac.uk/press- release/sharing-research-data-and-findings-relevant- novel-coronavirus-covid-19-outbreak

Cruz-Castanheira H., & Monteiro da Silva J. H. (2021). Mortalidad por COVID-19 y las desigualdades por nivel socioeconómico y por territorio. La Comisión Económica para América Latina (CEPAL). https://www.cepal.org/es/enfoques/mortalidad-covid-19-desigualdades-nivel-socioeconomico-territorio

Dorregaray-Farge, Z. E., Soto, A., & De la Cruz Vargas, J. (2021). Correlación entre mortalidad por covid-19, índices de riqueza y desarrollo humano y densidad poblacional en distritos de Lima Metropolitana durante el 2020. Revista de la Facultad de Medicina Humana, 21(4), 780–789. https://dx.doi.org/10.25176/rfmh.v21i4.3987

Evans, R., Bonilla, R., Salvatierra, R., & González, L. (2022). Una Pandemia en Perspectiva (100). Universidad Hispanoamericana. https://uh.ac.cr/investigaciones/detalle/una-pandemia-en-perspectiva-100-

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2007). Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons.

Google (s.f.). [Mapa Geográfico de los cantones de Costa Rica mediante Google Earth]. Recuperado el 15 de marzo del 2022, de https://www.google.com/earth/

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D. S. C., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., … Zhong, N. S. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. New England Journal of Medicine, 382, 1708–1720. https://doi.org/10.1056/NEJMoa2002032

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

INCAE. (2020). Índice de Progreso Social Cantonal 2019. INCAE Business School. https://www.incae.edu/es/clacds/proyectos/indice-de-progreso-social-cantonal-2019.html

Jeanne, L., Bourdin, S., Nadou, F., & Noiret, G. (2022). Economic globalization and the COVID-19 pandemic: global spread and inequalities. GeoJournal, 1–8. https://doi.org/10.1007/s10708-022-10607-6

Kadi, N., & Khelfaoui, M. (2020). Population density, a factor in the spread of COVID-19 in Algeria: statistic study. Bulletin of the National Research Centre, 44(1), 138. https://doi.org/10.1186/s42269-020-00393-x

Khavarian-Garmsir, A. R., Sharifi, A., & Moradpour, N. (2021). Are high-density districts more vulnerable to the COVID-19 pandemic?. Sustainable Cities and Society, 70, 102911. https://doi.org/10.1016/j.scs.2021.102911

Lai, Y. J., Chang, C. M., Lin, C. K., Yang, Y. P., Chien, C. S., Wang, P. H., & Chang, C. C. (2020). Severe acute respiratory syndrome coronavirus-2 and the deduction effect of angiotensin-converting enzyme 2 in pregnancy. Journal of the Chinese Medical Association, 83(9), 812–816. https://doi.org/10.1097/jcma.0000000000000362

Ludbrook, J. (2010). Linear regression analysis for comparing two measurers or methods of measurement: but which regression?: Linear regression for comparing methods. Clinical and Experimental Pharmacology & Physiology, 37(7), 692–699. https://doi.org/10.1111/j.1440-1681.2010.05376.x

Madrigal-Leer, F., Martínez-Montandón, A., Solís-Umaña, M., Helo-Guzmán, F., Alfaro-Salas, K., Barrientos-Calvo, I., Camacho-Mora, Z., Jiménez-Porras, V., Estrada-Montero, S., & Morales-Martínez, F. (2020). Clinical, functional, mental and social profile of the Nicoya Peninsula centenarians, Costa Rica, 2017. Aging Clinical and Experimental Research, 32(2), 313–321. https://doi.org/10.1007/s40520-019-01176-9

Ministerio de Salud. (2022). Situación Nacional COVID-19. Ministerio de Salud de Costa Rica. https://geovision.uned.ac.cr/oges/

Nakaya, T., Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2005): Geographically weighted Poisson regression for disease associative mapping. Statistics in Medicine, 24, 2695–2717. https://doi.org/10.1002/sim.2129

Pan, A., Liu, L., Wang, C., Guo, H., Hao, X., Wang, Q., Huang, J., He, N., Yu, H., Lin, X., Wei, S., & Wu, T. (2020). Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. Journal of the American Medical Association, 323(19), 1915–1923. https://doi.org/10.1001/jama.2020.6130

Programa de las Naciones Unidas para el Desarrollo (PNUD). (2021). Atlas de desarrollo humano cantonal, 2021. Programa de las Naciones Unidas para el Desarrollo. https://www.cr.undp.org/content/costarica/es/home/atlas-de-desarrollo-humano-cantonal.htm

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Thapa, R. B., & Estoque, R. C. (2012). Geographically Weighted Regression in Geospatial Analysis. In Y. Murayama (Ed.), Progress in Geospatial Analysis (pp. 85–96). Springer Japan.

Varotsos, C. A., Krapivin, V. F., & Xue, Y. (2021). Diagnostic model for the society safety under COVID-19 pandemic conditions. Safety Science, 136(105164), 105164. https://doi.org/10.1016/j.ssci.2021.105164

Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health: TM & IH, 25(3), 278–280. https://doi.org/10.1111/tmi.13383

Wheeler, D. C., & Páez, A. (2010). Geographically Weighted Regression. In M. Fishcer, & A. Getis (Eds.), Handbook of Applied Spatial Analysis (pp. 461–486). Springer Berlin Heidelberg.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. Journal of the American Medical Association, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648

Zazo-Moratalla, A., & Álvarez-Agea, A. (2020). CIUDAD COVID-19: una nueva inequidad en el espacio y el tiempo urbano. Urbano, 23(41), 04–09. https://doi.org/10.22320/07183607.2020.23.41.00

Zhang, C. H., & Schwartz, G. G. (2020). Spatial disparities in Coronavirus incidence and mortality in the United States: An ecological analysis as of may 2020. The Journal of Rural Health: Official Journal of the American Rural Health Association and the National Rural Health Care Association, 36(3), 433–445. https://doi.org/10.1111/jrh.12476

Zhang, H., Liu, Y., Chen, F., Mi, B., Zeng, L., & Pei, L. (2021). The effect of sociodemographic factors on COVID-19 incidence of 342 cities in China: a geographically weighted regression model analysis. BMC Infectious Diseases, 21(1), 428. https://doi.org/10.1186/s12879-021-06128-1

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical

Downloads

Download data is not yet available.