Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Diversity and structure of the cloud forest in the Sierra Madre de Chiapas, Mexico
PDF (Español (España))
HTML (Español (España))

Supplementary Files

PDF DIGITAL APPENDIX (Español (España))

Keywords

bosque de montaña
conservación
disturbio
gradiente ambiental
patrones de diversidad
Región Mesoamericana
montane forests
conservation
disturbance
environmental gradient
patterns of diversity
Mesoamerican region

How to Cite

Martínez-Camilo, R. (2023). Diversity and structure of the cloud forest in the Sierra Madre de Chiapas, Mexico. Revista De Biología Tropical, 71(1), e50771. https://doi.org/10.15517/rev.biol.trop.v71i1.50771

Abstract

Introduction: Cloud forests are noted for their narrow distribution in tropical mountain systems. Floristically, they are complex and heterogeneous, and there are still information gaps that hinder understanding how their diversity and structure varies. Objective: To analyze patterns of diversity, structure, and composition of the cloud forest in the Sierra Madre de Chiapas, Mexico. Methods: In 40 0.1 ha plots distributed in five sites in approximately 200 km, woody plants were measured and censused. The plots were located within an elevational belt between 1 700 and 2 100 m.a.s.l. With an analysis of variance, we determined the differences in true diversity and structure among the sites. The effect of environmental variables (climate and elevation gradient) was analyzed with simple regression models. To determine the effect of the environmental variables on floristic composition, multivariate methods were used. Results: In total, we recorded 4 021 individuals belonging to 220 species and 60 families. In true diversity, significant differences were found only in 0D (species richness), with a slight increase toward the central part of the study area. In the parameters 1D and 2D, diversity was constant. No significant differences were observed in tree density or basal area between sites. However, there was a significant decrease in density as elevation increased, while basal area increased toward higher parts. Beta diversity and differentiation in floristic composition are high and important between the plots of the same site, and they increase with increased distance between sites. Conclusions: Beta diversity and floristic differentiation contribute to variation to a greater degree in the cloud forest. Climatic variables and altitude have different effects on diversity and structure.

Objective: In this study, we analyzed the patterns of diversity, structure and composition of the cloud forest in the physiographic region Sierra Madre de Chiapas, Mexico.

Methods: In forty 0.1 ha plot distributed in five sites along almost 200 km in the Sierra Madre de Chiapas, we measured and censused the woody plants with a diameter at breast height of ≥ 5 cm. The plots were determined in an altitudinal belt between 1700 to 2100 m. With an analysis of variance, we determined the differences in richness, alpha diversity and structure among the sites, as well as simple regression models to evaluate the effect of environmental variables and altitude. We used multivariate methods to determine the variation in composition and the effect of environmental variables.

Results: In the census, we found 4 021 individuals belonging to 220 species and 60 families. Richness increased slightly toward the middle part, but significant differences were detected only between Pico de Loro and El Triunfo. Alpha diversity was constant in all the sites. No pattern was observed in density and basal area among the sites, but there was a statistically significant relationship with altitude (or temperature): a reduction in density with altitude and an increase in basal area. Beta diversity and differentiation in floristic composition is high and important among the plots of the same site and increases with distance between sites.

Conclusions: Beta diversity and floristic differentiation contribute to a greater extent to variation in the cloud forest. Climatic parameters and altitude have different effects, depending on the community parameter evaluated. However, the importance of historic factors related to the geology and natural and human disturbance that operate differentially throughout the Sierra Madre de Chiapas is also suggested.

https://doi.org/10.15517/rev.biol.trop..v71i1.50771
PDF (Español (España))
HTML (Español (España))

References

Alrutz, M., Gómez-Díaz, J. A., Schneidewind, U., Krömer, T., & Kreft, H. (2022). Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico. Botanical Sciences, 100(1), 67–85. https://doi.org/10.17129/BOTSCI.2855

Andreani, L., & Gloaguen, R. (2016). Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): Implications for the North American-Caribbean-Cocos plate boundary. Earth Surface Dynamics, 4(1), 71–102. https://doi.org/10.5194/esurf-4-71-2016

Briones-Salas, M., Lavariega, M. C., & Moreno, C. E. (2017). Effects of a wind farm installation on the understory bat community of a highly biodiverse tropical region in Mexico. PeerJ, 2017(6), e3424. https://doi.org/10.7717/peerj.3424

Bruijnzeel, L. A., Kappelle, M., Mulligan, M., & Scatena, F. N. (2010). Tropical montane cloud forests: State of knowledge and sustainability perspectives in a changing world. En L. A. Bruijnzeel, F. Scatena, & L. Hamilton (Eds.), Tropical montane cloud forests: Science for conservation and management (pp. 691–740). Cambridge University Press. https://doi.org/10.1017/CBO9780511778384.074

Cayuela, L., Golicher, D. J., Rey-Benayas, J. M., González-Espinosa, M., & Ramírez-Marcial, N. (2006). Fragmentation, disturbance and tree diversity conservation in tropical montane forests. Journal of Applied Ecology, 43, 1172–1181. https://doi.org/10.1111/j.1365-2664.2006.01217.x

Chain-Guadarrama, A., Finegan, B., Vilchez, S., & Casanoves, F. (2012). Determinants of rain-forest floristic variation on an altitudinal gradient in southern Costa Rica. Journal of Tropical Ecology, 28(5), 463–481. https://doi.org/10.1017/S0266467412000521

Chao, A., Chiu, C. H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45(1), 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540

Cortina-Villar, S., Plascencia-Vargas, H., Vaca, R., Schroth, G., Zepeda, Y., Soto-Pinto, L., & Nahed-Toral, J. (2012). Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management, 49(3), 649–662. https://doi.org/10.1007/s00267-011-9799-9

Domínguez-Yescas, R., Vázquez-García, J. A., Muñiz-Castro, M. Á., Hernández-Vera, G., Salcedo-Pérez, E., Rodríguez-Pérez, C., & Gallardo-Yobal, S. I. (2020). Small-scale environmental drivers of plant community structure and diversity in neotropical montane cloud forests harboring threatened Magnolia dealbata in Southern Mexico. Diversity, 12(12), 444. https://doi.org/10.3390/d12120444

Dossa, G. G. O., Paudel, E., Fujinuma, J., Yu, H., Chutipong, W., Zhang, Y., Paz, S., & Harrison, R. D. (2013). Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE, 8(7), e67720. https://doi.org/10.1371/journal.pone.0067720

Eller, C. B., Meireles, L. D., Sitch, S., Burgess, S. S. O., & Oliveira, R. S. (2020). How climate shapes the functioning of tropical montane cloud forests. Current Forestry Reports, 6(2), 97–114. https://doi.org/10.1007/s40725-020-00115-6

Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 46(1), 5–17. https://doi.org/10.1093/icb/icj003

González-Espinosa, M., Meave, J. A., Lorea-Hernández, F. G., Ibarra-Manríquez, G., & Newton, A. C. (2011). The red list of mexican cloud forest trees, fauna and flora international. Fauna & Flora International.

González-Espinosa, M., Rey-Benayas, J. M., Ramírez-Marcial, N., Huston, M. A., & Golicher, D. (2004). Tree diversity in the northern Neotropics: Regional patterns in highly diverse Chiapas, Mexico. Ecography, 27(6), 741–756. https://doi.org/10.1111/j.0906-7590.2004.04103.x

Graham, A. (2010). Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. Monographs in Systematic Botany from the Missouri Botanical Garden, 113, 1–618.

Guerrero-Hernández, R., Muñiz-Castro, M. Á., Vázquez-García, J. A., & Ruiz-Corral, J. A. (2019). Estructura del bosque mesófilo de montaña y su reemplazo por bosque de Abies en dos gradientes altitudinales del occidente de México. Botanical Sciences, 97(3), 301–322. https://doi.org/10.17129/botsci.2206

Hölscher, D., Köhler, L., Kappelle, M., & Leuschner, C. (2010). Ecology and use of old-growht and recovering montane oak forests in the Cordillera de Talamanca, Costa Rica. En L. A. Bruijnzeel, F. N. Scatena, & S. Hamilton (Eds.), Tropical montane cloud forests (pp. 610–627). Cambridge University Press.

Hu, A., Wang, J., Sun, H., Niu, B., Si, G., Wang, J., Yeh, C. F., Zhu, X., Lu, X., Zhou, J., Yang, Y., Ren, M., Hu, Y., Dong, H., & Zhang, G. (2020). Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments. ISME Journal, 14(4), 931–944. https://doi.org/10.1038/s41396-019-0574-x

Jankowski, J. E., Ciecka, A. L., Meyer, N. Y., & Rabenold, K. N. (2009). Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology, 78(2), 315–327. https://doi.org/10.1111/j.1365-2656.2008.01487.x

Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233–249. https://doi.org/10.1086/282487

Jiménez-Paz, R., Worthy, S. J., Valencia, R., Pérez, Á. J., Reynolds, A., Barone, J. A., & Burgess, K. S. (2021). Tree community composition, structure and diversity along an elevational gradient in an Andean forest of Northern Ecuador. Journal of Mountain Science, 18(9), 2315–2327. https://doi.org/10.1007/s11629-020-6479-3

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439. https://doi.org/10.1890/06-1736.1

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122

Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006

Lieberman, D., Lieberman, M., Peralta, R., & Hartshorn, G. R. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, 84(2), 137–152. https://doi.org/10.2307/2261350

Martínez-Camilo, R., González-Espinosa, M., Ramírez-Marcial, N., Cayuela, L., & Pérez-Farrera, M. Á. (2018). Tropical tree species diversity in a mountain system in southern Mexico: local and regional patterns and determinant factors. Biotropica, 50(3), 499–509. https://doi.org/10.1111/btp.12535

Montoya, E., Matthews-Bird, F., Brooks, S. J., & Gosling, W. D. (2021). Forests protect aquatic communities from detrimental impact by volcanic deposits in the tropical Andes (Ecuador). Regional Environmental Change, 21(2), 53. https://doi.org/10.1007/s10113-021-01783-1

Moreira, B., Villa, P. M., Alvez-Valles, C. M., & Carvalho, F. A. (2021). Species composition and diversity of woody communities along an elevational gradient in tropical Dwarf Cloud Forest. Journal of Mountain Science, 18(6), 1489–1503. https://doi.org/10.1007/s11629-020-6055-x

Müllerried, F. K. (1957). Geología de Chiapas. Gobierno del Estado de Chiapas.

Myster, R. W. (2017). Gradient (elevation) vs. disturbance (agriculture) effects on primary cloud forest in Ecuador: floristics and physical structure. New Zealand Journal of Forestry Science, 47(1), 3. https://doi.org/10.1186/s40490-016-0085-8

Myster, R. W. (2021). Introduction. En R. W. Myster (Ed.), The Andean Cloud Forest (pp. 1–24). Springer Nature. https://doi.org/10.1007/978-3-030-57344-7

Navarrete, D., Méndez, D., Flamenco, A., & Alba, P. (2010). Situación actual, fragmentación, áreas prioritarias de conservación y principales amenazas del bosque mesófilo de Chiapas. En M. A. Pérez-Farrera, C. Tejeda-Cruz, & E. Silva-Rivera (Eds.), Los bosques mesófilos de montaña en Chiapas: Situación actual, diversidad y conservación (pp. 295–326). Universidad de Ciencias y Artes de Chiapas.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community ecology package. R package version 2.5-2. https://cran.r-project.org/web/packages/vegan/vegan.pdf

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statiscal Computing, Vienna, Austria. https://www.R-project.org

Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2), 200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8(2), 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x

Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., & Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science, 365(6458), 1114–1119. https://doi.org/10.1126/science.aax0151

Ramírez-Marcial, N., González-Espinosa, M., & Williams-Linera, G. (2001). Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest Ecology and Management, 154(1–2), 311–326. https://doi.org/10.1016/S0378-1127(00)00639-3

Scatena, F. N., Bruijnzeel, L. A., Bubb, P., & Das, S. (2010). Setting the stage. En L. A. Bruijnzeel, F. N. Scatena, & L. S. Hamilton (Eds.), Tropical montane cloud forests science for conservation and management (pp. 38–63). Cambridge University Press.

Schwarzkopf, T., Riha, S. J., Fahey, T. J., & Degloria, S. (2011). Are cloud forest tree structure and environment related in the Venezuelan Andes? Austral Ecology, 36(3), 280–289. https://doi.org/10.1111/j.1442-9993.2010.02160.x

Toledo-Aceves, T., Meave, J. A., González-Espinosa, M., & Ramírez-Marcial, N. (2011). Tropical montane cloud forests: Current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management, 92(3). https://doi.org/10.1016/j.jenvman.2010.11.007

Toledo-Garibaldi, M., & Williams-Linera, G. (2014). Tree diversity patterns in successive vegetation types along an elevation gradient in the Mountains of Eastern Mexico. Ecological Research, 29(6), 1097–1104. https://doi.org/10.1007/s11284-014-1196-4

Velázquez-Muñoz, F. A., Martínez, J. A., Chavanne, C., Durazo, R., & Flament, P. (2011). Circulación costera forzada por el viento en el golfo de Tehuantepec, México. Ciencias Marinas, 37(4), 443–456. https://doi.org/10.7773/cm.v37i4A.1920

Villaseñor, J. L. (2010). El bosque húmedo de montaña en México y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad - Universidad Nacional Autónoma de México.

Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation, 11(10), 1825–1843. https://doi.org/10.1023/A:1020346519085

Williams-Linera, G., Toledo-Garibaldi, M., & Hernández, C. G. (2013). How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico? Plant Ecology, 214(5), 685–701. https://doi.org/10.1007/s11258-013-0199-5

Wilson, S. J., & Rhemtulla, J. M. (2018). Small montane cloud forest fragments are important for conserving tree diversity in the Ecuadorian Andes. Biotropica, 50(4), 586–597. https://doi.org/10.1111/btp.12542

Witt, C., Rangin, C., Andreani, L., Olaez, N., & Martinez, J. (2012). The transpressive left-lateral Sierra Madre de Chiapas and its buried front in the Tabasco plain (southern Mexico). Journal of the Geological Society, 169(2), 143–155. https://doi.org/10.1144/0016-76492011-024

Worthy, S. J., Jiménez-Paz, R. A., Pérez, Á. J., Reynolds, A., Cruse-Sanders, J., Valencia, R., Barone, J. A., & Burgess, K. S. (2019). Distribution and community assembly of trees along an andean elevational gradient. Plants, 8(9), 7–10. https://doi.org/10.3390/plants8090326

Yirdaw, E., Starr, M., Negash, M., & Yimer, F. (2015). Influence of topographic aspect on floristic diversity, structure and treeline of afromontane cloud forests in the Bale Mountains, Ethiopia. Journal of Forestry Research, 26(4), 919–931. https://doi.org/10.1007/s11676-015-0155-4

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista de Biología Tropical

Downloads

Download data is not yet available.