Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Feeding preferences in aquatic invertebrates associated to Egeria densa in a tropical high-mountain lake
PDF
HTML

Keywords

Lago de Tota; stable isotopes; gut contents; aquatic invertebrates; Neotropic.
Lago de Tota; isótopos estables; contenidos estomacales; invertebrados acuáticos; Neotrópico.

How to Cite

Pedroza-Ramos, A., Tamaris-Turizo, C. E., & Aranguren-Riaño, N. (2020). Feeding preferences in aquatic invertebrates associated to Egeria densa in a tropical high-mountain lake. Revista De Biología Tropical, 68(S2), S92–S103. https://doi.org/10.15517/rbt.v68iS2.44341

Abstract

Introduction: The benthic fauna of the littoral zone in lakes is important in transferring energy to other trophic levels, habitat coupling, and helping to keep habitat stability. The study of this type of interactions in lentic systems is priority, since functional aspects about biological communities are unknown. Objective: Describing the trophic relations of aquatic invertebrates of the littoral zone in a tropical high mountain lake by characterizing gut content and stable isotope analysis of δ13C and δ15N. Methods: Samples of benthic invertebrates were collected in the littoral zone of the Lago de Tota where Egeria densa was present using a handheld net method. Samples were processed in the laboratory, organisms were identified, counted and weighed. Gut contents and δ13C and δ15N stable isotopes analysis were performed as well. Results: Records of the trophic relations of aquatic invertebrates, which live in the littoral in high mountain lentic ecosystem in the Neotropics are shown. The analysis of gut contents distinguished seven food items, microphytes and MOPF were the most frequent, and through the stable isotopes analysis (δ15N) we identified four trophic levels, among resources (macrophytes and POM), and consumers (detritivores, herbivores, and predators). The two upper trophic levels concentrated greater diversity and biomass. Conclusion: Most of the organisms studied were linked to omnivorous habits, evidenced in a wide spectrum of food items in their diet. The δ15N values show an enrichment, which occurs due to the effects of the tendency towards eutrophication of the system or due to unknown values of protozoa and bacteria that plays a fundamental role in the diet of these organisms, besides the δ13C values reported in organisms consumes, allows us to suggest an affinity with native resources of the littoral zone.

https://doi.org/10.15517/rbt.v68iS2.44341
PDF
HTML

References

Aranguren-Riaño, N., Shurin, J. B., Pedroza-Ramos, A., Muñoz, C., López, R., & Cely, O. (2018). Sources of nutrients behind recent eutrophication of Lago de Tota, a high mountain Andean lake. Aquatic Sciences, 80:39. https://doi.org/10.1007/s00027-018-0588-x.

Blondel, J. (2003). Guilds or functional groups: Does it matter? Oikos, 100(2), 223–231. https://doi.org/10.1034/j.1600-0706.2003.12152.x

Brinkhurst, R., & Marchese, M. (1991). Guía para la identificación de oligoquetos acuáticos continentales de Sud y Centroamérica (2 ed). Asociación de Ciencias Naturales del Litoral.

Brown, K. (1982). Resource Overlap and Competition in Pond Snails: An Experimental Analysis. Ecology, 63(2), 412–422. https://doi.org//10.2307/1938959.

Cañón, J., & Valdes, J. (2011). Assessing the influence of global climate and anthropogenic activities on the water balance of an Andean Lake. Journal of Water Resource and Protection, 3, 883–891. https://doi.org/10.4236/jwarp.2011.312098.

Chará-Serna, A. M., Chará, J. D., Zúñiga, M. del C., Pearson, R. G., & Boyero, L. (2012). Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie - International Journal of Limnology, 48(2), 139–144. https://doi.org/10.1051/limn/2012013.

Chase, J. M. (2003). Experimental evidence for alternative stable equilibria in a benthic pond food web. Ecology Letters, 6, 733–741. https://doi.org/10.1046/j.1461-0248.2003.00482.x.

Cordero, R. D., Ruiz, J. E., & Vargas, E. F. (2005). Spatial temporal determination of phosphorus concentration in Lake of Tota. Revista Colombiana de Química, 34(2), 211–218. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0120-28042005000200010&script=sci_arttext&tlng=pt.

Cummins, K., Merritt, R., & Andrade, P. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 40(1), 69–89. https://doi.org//10.1080/01650520400025720.

Cummins, K. (1973). Trophic relations in aquatic insects. Annual Review of Entomology, 18(220), 183–206. https://doi.org/10.1146/annurev.en.18.010173.001151

Carvalho, A. P. C., Gücker, B., Brauns, M & Boëchat, I. (2014). High variability in carbon and nitrogen isotopic discrimination of tropical freshwater invertebrates. Aquatic Sciences 77:307. https://doi.org/10.1007/s00027-014-0388-x.

Dangles, O. (2002). Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences, 59(9), 1563–1573. https://doi.org/10.1139/f02-122.

Diehl, S. (2014). Direct and Indirect Effects of Omnivory in a Littoral Lake Community. Ecology, 76(6), 1727–1740. https://doi.org/10.2307/1940706.

Domínguez, E., & Fernández, H. R. (Eds.). (2009). Macroinvertebrados bentónicos sudamericanos: Sistemática y biología (1ra ed.). Tucumán: Fundación Miguel Lillo.

Dormann, C., Fruend, J., & Gruber, B. (2015). Package“bipartite.”

Echelpoel, W. Van, Eurie, M. A., Butsel, J. Van, Lock, K., Antonio, J., Dueñas, A., … Goethals, P. L. M. (2018). Macroinvertebrate functional feeding group structure along an impacted tropical river: The Portoviejo River (Ecuador). Limnologica, 73(1), 12–19. https://doi.org/10.1016/j.limno.2018.10.001.

Elton, C. (1927). Animal Ecology. New York: MacMillan.

FlöBner, D. (2000). Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Leiden: Backhuys Publishers.

Gillooly, J. F., Allen, A. P., & Brown, J. H. (2006). Food-web structure and dynamics: Reconciling alternative ecological currencies. In M. Pascual & J. A. Dunne (Eds.), Ecological Networks (Santa Fe I, pp. 209-220). New York: Oxfford University Press.

Granados-Martínez, C., Zúñiga-Céspedes, B., & Acuña-Vargas, J. (2016). Diets and trophic guilds of aquatic insects in molino river, La Guajira, Colombia. Journal of Limnology, 75(1S), 144–150. https://doi.org/10.4081/jlimnol.2016.1396.

Hadwen, W. L., & Bunn, S. E. (2005). Food web responses to low-level nutrient and 15N-tracer additions in the littoral zone of an oligotrophic dune lake. Limnology and Oceanography. 50(4), 1096-1105. https://doi.org/10.4319/lo.2005.50.4.1096.

Hans, A. (1988). Hyalella paramoensis sp. n. aus dem Páramo de Chisacá (Anden) (Crustacea: Amphipoda:Talitroidea). Mitteilungen Aus Dem Hamburgischen Zoologischen Museum Und Institut, 85, 103-109.

Heino, J. (2008). Patterns of functional biodiversity and function – environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53(4), 1446–1455. https://doi.org/10.4319/lo.2008.53.4.1446.

Henriques-Oliveira, A. L., Nessimian, J. L., & Dorvillé, L. F. (2003). Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology, 63(2), 269–281. https://doi.org/10.1590/S1519-69842003000200012.

Hurtado-Borrero, Y. M., Tamaris-Turizo, C. E., López-Rodríguez, M. J., & Tierno de Figueroa, M. J. (2018). Nymphal feeding habits of two Anacroneuria species (Plecoptera, Perlidae) from Sierra Nevada de Santa Marta, Colombia. Journal of Limnology, 78(1), 40–46. https://doi.org/10.4081/jlimnol.2018.1858.

Hyslop, E. J. (1980). Stomach contents analysis-a review of methods and their application. Fish Biol, 17, 411–429. https://doi.org//10.1111/j.1095-8649.1980.tb02775.x.

Jansson, M., Persson, L., De Roos, A., Jones, R., & Tranvik, L. J. (2007). Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology and Evolution, 22(6), 316–322. https://doi.org/10.1016/j.tree.2007.02.015.

Johnson, R. K., Goedkoop, W., & Sandin, L. (2004). Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshwater Biology, 49(9), 1179–1194. https://doi.org/10.1111/j.1365-2427.2004.01262.x.

Konohira, E., & Yoshioka, T. (2005). Dissolved organic carbon and nitrate concentrations in streams : a useful index indicating carbon and nitrogen availability in catchments. In T. Kohyama, l J. Canadel, D. Ojima, & L. Pitelka (Eds.), Forest Ecosystems and Environments (Springer, Vol. 20, pp. 359–365). Tokyo. https://doi.org/10.1007/s11284-005-0051-z.

Leibold, M. A., Chase, J. M., Shurin, J. B., & Downing, A. L. (1997). Species Turnover and the Regulation of Trophic Structure. Annual Review of Ecology and Systematics, 28, 467-494. https://doi.org//10.1146/annurev.ecolsys.28.1.467.

Meisch, C. (2000). Freshwater Ostracoda of Western and Central Europe (Bd.8.Crust). Berlin: Spektrum Akademischer Verlag.

Mello Brandão, L., Brighenti, L., Staehr, P., Asmala, E., Massicotte, P., Rodrigues, F., … Bezerra-Neto, J. (2018). Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake. Biogeosciences, 15, 2931–2943. https://doi.org//10.5194/bg-15-2931-2018.

Merrit, R. W., Cummins, K. W., & Berg, M. B. (Eds.). (2008). An introduction to the aquatic insects of North America (4th ed.). Kendall Hunt Publishing Comapany.

Merritt, R., Cummins, K., & Berg, M. (2017). Trophic Relationships of Macroinvertebrates. In F. Hauer & A. Gary (Eds.), Methods in Stream Ecology (pp. 413-433). Academic Press.

Ministerio de Ambiente y Desarrollo Sostenible. (2018). Lista de especies silvestres amenazadas de la diversidad biológica continental y marino-costera de Colombia - Resolución 1912 de 2017 expedida por el Ministerio de Ambiente y Desarrollo Sostenible. https://doi.org//10.15472/5an5tz

Moore, J. C., Berlow, E. L., Coleman, D. C., de Ruiter, P. C., Dong, Q., Hastings, A., … Wall, D. J. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584–600. https://doi.org/10.1111/j.1461-0248.2004.00606.x.

Muñoz, I., Rodrigues-Capítulo, A., Camacho, A., Gonzáles, J. M., Romaní, A. M., & Sabater, S. (2009). Flujo de energía en el ecosistema fluvial. Producción primaria y producción secundaria. In A. Elosegi & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 323-346). Fundación BBVA.

Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE, 5(3), e9672. https://doi.org/10.1371/journal.pone.0009672.

Pedroza-Ramos, A., Caraballo, P., & Aranguren-Riaño, N. (2016). Estructura trófica de los invertebrados acuáticos asociados a Egeria densa (Planch. 1849) en el Lago de Tota, (Boyacá-Colombia). Intropica, 11, 21–34. https://doi.org/10.21676/23897864.1858.

Pedroza-Ramos, A., & Rozo-Suárez, S. (Eds.). (2017). Catálogo de la Biota Acuática del Lago de Tota (Boyacá, Colombia): Fitoplancton, Zooplancton y Zoobentos. Tunja: Editorial UPTC.

Pennak, R. (1989). Fresh-Water invertebrates of the United States: Protozoa to Mollusca (3rd ed.). John Wiley & Sons, INC.

Peterson, B. J. (1999). Stable isotopes as tracers of organic matter input and transfer in benthic food webs : A review. Acta Oecologia, 20(4), 479–487. https://doi.org/10.1016/S1146-609X(99)00120-4.

Peterson, B. J., & Fry, B. (1987). Stable Isotopes in Ecosystem. Annual Review of Ecology and Systematics, 18, 293–320. https://doi.org/10.1146/annurev.es.18.110187.001453.

Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., … Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127.

Post, D. (2002). Using stable isotopes to estimate trophic position : models, methods, and assumptions. Ecology, 83(3), 703–718. https://doi.org//10.1890/0012-658(2002)083[0703:USITET]2.0.CO;2.

Ramírez, A. (2010). Odonata. Revista de Biología Tropical, 58(Suppl. 4), 97-136.

Ramírez, A., & Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America: A critical analysis and review of existing literature. Revista de Biología Tropical, 62(2), 155–167. https://doi.org/10.15517/rbt.v62i0.15785.

Rivera Usme, J. J., Pinilla Agudelo, G., & Camacho Pinzón, D. L. (2013). Macroinvertebrate Trophic Groups in an Andean Wetland of Colombia. Acta Biológica Colombiana, 18(2), 279–292. https://doi.org/http://dx.doi.org/10.1590/1519-6984.10613.

Rodrigues-Capítulo, A., Muñoz, I., Bonada, N., Gaudes, A., & Tomanova, S. (2009). La biota de los ríos: los invertebrados. In A. Elosegi & S. Sabater (Eds.), Conceptos y técnicas en ecología fluvial (pp. 253-270). Bilbao: Fundación BBVA.

Rosi-Marshall, E. J., Wellard, K., Hall Jr, R. O., & Vallis, K. A. (2016). Methods for quantifying aquatic macroinvertebrate diets. Freshwater Science, 35(1), 229–236. https://doi.org/10.1086/684648.

Ruiz, Y., Rivera-Rondon, C. A., & Ovalle, H. (2018). Feeding habits of chironomids (Diptera: Chironomidae) of Paramo Lakes, Chingaza, Colombia. Revista de Biologia Tropical, 66(1), 136–148. https://doi.org/10.15517/rbt.v66i1.28951.

Schindler, D. E., Carpenter, S. R., Kathryn, L. C., He, X., Hodgson, J. R., Kitchell, J. F., … Soranno, P. A. (1996). Food Web Structure and Littoral Zone Coupling to Pelagic Trophic Cascades. (G. A. Polis & W. K.O., Eds.). Boston: Springer. https://doi.org//10.1007/978-1-4615-7007-3_9.

Schindler, D. E., & Scheuerell, M. D. (2002). Habitat Coupling in Lake Ecosystems. Oikos, 98(2), 177–189. https://doi.org/10.1034/j.1600-0706.2002.980201.x.

Solomon, C. T., Carpenter, S. R., Cole, J. J., & Pace, M. L. (2008). Support of benthic invertebrates by detrital resources and current autochthonous primary production : results from a whole-lake 13C addition. Freshwater Biology, 53, 42–54. https://doi.org/10.1111/j.1365-2427.2007.01866.x.

Stoks, R., & Córdoba-Aguilar, A. (2012). Evolutionary Ecology of Odonata : A Complex Life Cycle Perspective. Annu. Rev. Entomol., 57, 249–265. https://doi.org/10.1146/annurev-ento-120710-100557.

Tamaris-Turizo, C. E., Pinilla-A, G. A., & Muñoz, I. (2018). Trophic network of aquatic macroinvertebrates along an altitudinal gradient in a Neotropical mountain river. Revista Brasileira de Entomologia, 62(3), 180–187. https://doi.org//10.1016/j.rbe.2018.07.003.

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, 277(5330), 1300–1302. https://doi.org/10.1126/science.277.5330.1300.

Tomanova, S., Goitia, E., & Helešic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556(1), 251-264. https://doi.org/10.1007/s10750-005-1255-5.

Vanderklift, M. A., & Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia, 136(2), 169–182. https://doi.org/10.1007/s00442-003-1270-z.

Vanni, M. J. (2002). Nutrient Cycling by Animals in Freshwater Ecosystems. Annual Review of Ecology and Systematics, 33(1), 341–370. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519.

Waichman, A. V, García-Dávila, C. R., Hardy, E. R., & Robertson, B. A. (2002). Composição do Zooplâncton em diferentes ambientes do lago Camaleão, na ilha da Marchantaria, Amazonas, Brasil. Acta Amazonica, 32(2), 339–347. https://doi.org//10.1590/1809-43922002322347.

Young, J., & Ironmonger, J. (1980). A laboratory study of the food of three species of leeches occuring in British Lakes. Hydrobiologia, 68, 209–215. https://doi.org//10.1007/BF00018828.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Revista de Biología Tropical

Downloads

Download data is not yet available.