Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Relationship between floristic composition and soil nutrients in palm communities at the Chocó region of Colombia and Ecuador
PDF
HTML

Keywords

Arecaceae
exchangeable bases
lowland forests
edaphic gradient
Mantel test
Arecaceae
bases intercambiales
bosques de tierras bajas
gradiente edáfico
test Mantel

How to Cite

Copete Maturana, J. C., Cámara Leret, R., Sánchez, M., & Balslev, H. (2019). Relationship between floristic composition and soil nutrients in palm communities at the Chocó region of Colombia and Ecuador. Revista De Biología Tropical, 67(4), 716–732. https://doi.org/10.15517/rbt.v67i4.34044

Abstract

One of the most important questions in ecology is: which are the environmental factors that explain the high plant diversity of tropical forests? We studied the floristic composition of palm communities and their relationship to soil nutrients in two localities of the Chocó region to understand (1) how soil nutrients vary between the two localities; (2) what is the relationship between soil nutrients and palm floristic composition; (3) what are the most important nutrients that explain the variation in floristic composition of palm communities; and (4) how does the abundance of the most exuberant understory and canopy palm species vary along the concentration gradient of the most important nutrients? We established 20 transects (5 x 500 m) and identified all palm individuals of all growth stages. Soil samples were taken at each transect at the beginning, middle, and end. Macronutrients (Al, Ca, Mg, K, P) were extracted with the Mehlich-III technique and their concentrations were analyzed by inductively coupled plasma emission spectrometry (ICP-OES). We used Mantel test, partial Mantel tests, linear regressions, and non-metric multidimensional scaling to determine if the concentration of nutrients was related to the floristic composition. We found a total of 9 158 individuals and 33 species of palms in the 5 ha covered by our transects. Floristic composition had a positive and significant correlation with soil nutrients (rM = 0.63-0.69) and with geographical distance between transects (rM= 0.71-0.75), whereas the soil nutrients were highly correlated with geographical distance (rM = 0.72). We also found a small, yet significant, relationship between soil fertility and the abundance of understory palms, but no relationship with canopy palms. Our results demonstrate for the first time that soils play an important role in the composition of palm communities at local scales in the Chocó region, and that infertile and phosphorus-rich soils have the highest palm diversity.

https://doi.org/10.15517/rbt.v67i4.34044
PDF
HTML

References

Andersen, K. M., Turner, B. L., & Dalling, J. W. (2010). Soil-based habitat partitioning in understory palms in lower montane tropical forests. Journal of Biogeography, 37, 278-292. DOI: 10.1111/j.1365-2699.2009.02192.x

Aplet, G. H., Hughes, R . F., & Vitousek, P. M. (1998). Ecosystem development on Hawaiian lava flows: biome and species composition. Journal of Vegetation Science, 9, 17-26. DOI: org/10.2307/3237219

Ashton, S. P. (1992). Species Richness in Plant Communities. En P.L. Fiedler, & S. K. Jain. (Eds.), Conservation Biology (pp. 3-22). Boston, USA: Springer.

Balslev, H., Navarrete, H., Paniagua-Zambrana, N., Pedersen, D., Eiserhardt, W. L., & Kristiansen, T. (2010). El uso de transectos para el estudio de comunidades de palmas. Ecología en Bolivia, 45(3), 8-22.

Balslev, H., Kahn, F., Millan, B., Svenning, J. C., Kristiansen, T., Borchsenius, F., ... & Eiserhardt, W. L. (2011). Species diversity and growth forms in tropical American palm communities. The Botanical Review, 77, 381-425. DOI: 10.1007/s12229-011-9084-x

Balslev, H., Pedersen, D., Navarrete, H., & Pintaud, J. C. (2015). Diversidad y abundancia de palmas. En H. Balslev, M. J. Macía, & H. Navarrete (Eds.), Cosechas de palmas en el Noroeste de Sur America Bases científica para su manejo y Conservación (pp. 13-25). Quito, Ecuador: Pontificia Universidad Católica del Ecuador.

Balslev, H., Bernal, R., & Fay, M. F. (2016). Palms – emblems of tropical forests. Botanical Journal of the Linnean Society, 182(2), 195-200. DOI: 10.1111/boj.12465

Bjorholm, S., Svenning, J. C., Skov, F., & Balslev, H. (2005). Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography, 14, 423-429. DOI: 10.1111/j.1466-822x.2005.00167.x

Browne, L., & Karubian, J. (2016). Diversity of palm communities at different spatial scales in a recently fragmented tropical landscape. Botanical Journal of the Linnean Society, 182, 1-13. DOI: 10.1111/boj.12384

Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H., Barfod, A., Copete, J. C., & Macía, M. J. (2014). Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Forest Ecology and Management, 334, 28-42. DOI: org/10.1016/j.foreco.2014.08.019

Cámara-Leret, R., Copete, J. C., Balslev, H., Soto-Gómez, M., & Macía, M. J. (2016). Amerindian and Afro-American perceptions of their traditional knowledge in the Chocó biodiversity hotspot. Economic Botany, 70(2), 160-175.

Cámara-Leret, R., Tuomisto, H., Ruokolainen, K., Balslev, H., & Kristiansen, S. M. (2017). Modelling responses of western Amazonian palms to soil nutrients. Journal of Ecology, 105(2), 367-381. DOI: 10.1111/1365-2745.12708

Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5064-5068. DOI: 10.1073/pnas.1218042110

Conservation International. (2014). Hotspots biodiversity. Recuperado de http://www.conservation.org/where/priority_areas/hotspots/south_america/Tumbes-Chocó-Magdalena/Pages/biodiversity.aspx

Costa, F. R. C., Guillaumet, J. L., Lima, A. P., & Pereira, O. S. (2009). Gradients within gradients: The mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science, 20, 69-78. DOI: 10.3170/2008-8-18478

Clinebell, H. R. R., Phillips, O. L., Gentry, A. H., Stark, N., & Zuuring, H. (1995). Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation, 4, 56-90.

Duivenvoorden, J. F. (1994). Vascular plant species counts in the rain forests of the middle Caqueta area, Colombian Amazonia. Biodiversity and Conservation, 3, 685-715.

Duque, A., Sánchez, M., Cavelier, J., & Duivenvoorden, J. F. (2002). Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. Journal of Tropical Ecology, 18(4), 499-525. DOI: 10.1017/S0266467402002341

Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., & Lewis, C. E. (2008). Genera Palmarum: the Evolution and Classification of Palms. Washington D.C., USA: Smithsonian Libraries.

Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391-1416. DOI: 10.1093/aob/mcr146

Eslava, J. (1992). La precipitación en la Región del Pacifico (Lloró: ¿el sitio más lluvioso del mundo?). Zenit, 3, 7-33.

Faber-Langendoen, D., & Gentry, A. H. (1991). The structure and diversity of rainforest at Bajo Calima, Chocó, western Colombia. Biotropica, 23(1), 2-11.

Forero, E. & Gentry, A. H. (1989). Lista anotada de las plantas del Departamento del Chocó, Colombia. Bogotá, Colombia: Instituto de Ciencias Naturales, Universidad Nacional de Colombia.

Galeano, G. (2000). Forest use at the Pacific coast of Chocó, Colombia: A quantitative approach. Economic Botany, 54(3), 358-376.

Galeano, G. (2001). Estructura, riqueza y composición de plantas leñosas en el golfo de Tribugá, Chocó, Colombia. Caldasia, 23(1), 213-236.

Galeano, G., & Bernal, R. (2010). Palmas de Colombia. Guía de campo. Bogotá, Colombia: Editorial Universidad Nacional de Colombia.

Garibaldi, C., Nieto-Ariza, B., Macía, M. J., & Cayuela, L. (2014). soil and geographic distance as determinants of floristic composition in the Azuero Península (Panamá). Biotropica, 46(6), 687-695. DOI: org/10.1111/btp.12174

Gentry, A. H. (1982a). Patterns of neotropical plants species diversity. En M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary Biology (pp. 1-84). Boston, USA: Springer.

Gentry, A. H. (1982b). Patterns of neotropical plants species diversity. Evolutionary Biology, 15, 1-84.

Gentry, A. H. (1986). Species richness and floristic composition of Chocó region plant communities. Caldasia, 15, 71-91.

Gentry, A. H. (1988). Changes of plant community diversity and floristic composition on enviromental and geographical gradients. Annal of Missouri Botanical Garden, 75, 1-34.

Gentry, A. H. (1993). Riqueza de especies y composición florística de las comunidades de plantas de la region del Chocó: una actualización. En P. Leyva (Ed.), Colombia Pacífico (pp. 201-219). Bogotá, Colombia: Fondo FEN Colombia.

Gentry, A. H., & Dodson, C. (1987). Contribution of non-trees to species richness of a tropical rain forest. Biotropica, 19, 149-156.

Hall, J. S., Mckenna, J. J., Ashton, P. M. D., & Gregoire, T. G. (2004). Habitat characterization underestimates the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, 85, 2171-2183. DOI: org/10.1890/03-0043

Henderson, A., Galeano, G., & Bernal, R. (1995). A field guide to the palms of the America. New Jersey, USA: Princeton University Press.

Henderson, A. (2002). Evolution and Ecology of Palms. New York, USA: New York Botanical Garden Press.

Huston, M. (1980). Soil nutrients and tree species richness in Costa Rican forests. Jounal of Biogeography, 7, 147-157. DOI: 10.2307/2844707

John, R., Dalling, J. M., Harms, K. E., Yavitt, J. B., Stallard, R. B., Mirabello, M., ... Foster, R. B. (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 10(43), 864-869. DOI: 10.1073:pnas.0604666104

Kahn, F., & Mejia, K. (1990). Palm communities in wetland forest ecosystems of Peruvian Amazonia. Forest Ecology and Management, 33-34, 169-179.

Kahn, F., & De Granville, J. J. (1992). Palms in forest ecosystems of Amazonia. Heidelberg, Germany: Springer.

Kristiansen, T., Svenning, J. C., Eiserhard, W. L., Pedersen, D., Brix, H., Kristiansen, S. M., ... Balslev, H. (2012). Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography, 39, 1318-1332. DOI: 10.1111/j.1365-2699.2012.02689.x

Legendre, P., & Legendre, L. F. (2012). Numerical Ecology. Amsterdam, Netherlands: Elsevier.

Ledezma-Renteria, E., & Galeano, G. (2014). Usos de las palmas en las tierras bajas del Pacífico colombiano. Caldasia, 36(1), 71-84.

Mehlich, A. (1984). Mehlich 3 soil test extractant: a modification of Mehlich 2extractant. Communications in Soil Science & Plant Analysis, 15, 1409-1416. DOI:org/10.1080/00103628409367568

Minchin, P. R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69, 89-107.

Muscarella, R., Bacon, C. D., Faurby, S., Antonelli, A., Kristiansen, S. M., Svenning, J. C., & Balslev, H. (2018). Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Annal of Botany, XX, 1-15. DOI: 10.1093/aob/mcy196

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O., ... Wagner, H. (2016). vegan: Community Ecology Package version 2.4-1. Recuperado de https://cran.r-project.org/package=vegan

Olivares, I., Svenning, J. C., Va Bodegom, P. M., Valencia, R., & Balslev, H. (2017). Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17 years. Global Change Biology, 23, 1232-1239. DOI: 10.1111/gcb.13494

Paoli, G. D., Curran, L. M., & Zak, D. R. (2006). Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology, 94, 157-170. DOI: 10.1111/j.1365-2745.2005.01077.x

Pennisis, E. (2005). What determines species diversity. Science, 309(5731), 90.

Peñas-Claros, M., Poorter, L., Alarcón, A., Blate, G., Choque, U., Fredericksen, T. S., ... Toledo, M. (2012). Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica, 44(3), 276-283. DOI: org/10.1111/j.1744-7429.2011.00813.x

Potts, M. D., Ashton, P. S., Kaufman, L. S., & Plotkin, J. B. (2002). Habitat patterns in tropical rain forests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782-2797. DOI: org/10.1890/0012-9658

Poveda, C., Rojas, C. A., Rudas, A., & Rangel, O. (2004). El Chocó Biogeográfico: Ambiente físico. En O. Rangel (Ed.), Colombia Diversidad Biótica IV: El Chocó biogeográfico / Costa Pacífica (pp. 1-21). Bogotá, Colombia: Instituto de Ciencias Naturales, Universidad Nacional de Colombia.

Poulsen, A. D., Tuomisto, H., & Balslev, H. (2006). Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica, 38(4), 468-478. DOI: 10.1111/j.1744-7429.2006.00168.x

Quinto-Mosquera, H., & Moreno-Hurtado, F. (2014). Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del Chocó biogeográfico. Revista Árvore, Viçosa-MG, 38(6), 1123-1132.

Quinto-Mosquera, H., & Moreno-Hurtado, F. (2016). Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Revista Facultad Nacional de Agronomía Medellín, 69(1), 7813-7823. DOI: org/10.15446/rfna.v69n1.54749

R Development Core Team. (2017). R: a language and environment for statistical computing. Recuperado de http://www.R-project.org

Ramírez-Moreno, G., & Galeano, G. (2011). Comunidades de palmas en dos bosques de Chocó, Colombia. Caldasia, 33(2), 315-329.

Schneider, E., Cámara-Leret, R., Barfod, A., & Weckerle, C. S. (2017). Palm use by two chachi communities in Ecuador: a 30-year reappraisal. Economic Botany, 71(4), 342-360.

Slik, J. W. F., Raes, N., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Meijaard, E., ... Wulffraat, S. (2009). Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Diversity and Distrubution, 15, 523-532. DOI: 10.1111/j.1472-4642.2009.00557.x

Specht, A., & Specht, R. L. (1993). Species richness and canopy productivity and Australian plant communities. Biodiversity and Conservation, 2(2), 152-167. DOI: 10.1007/BF00056131

Stevenson, R. P., Aldana, A. M., Cardenas, S., & Negret, P. J. (2018). Flooding and soil composition determine beta diversity of lowland forests in Northern South America. Biotropica, 50(4), 1-10. DOI: 10.1111/btp.12541

Swaine, M. D. (1996). Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology, 84, 419-428. DOI: 10.2307/2261203

Ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomao, R. P., Guevara, J. E., ... Salman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342, 1243092. DOI: 10.1126/science.1243092

Tuomisto, H., Ruokolainen, K., Poulsen, A. D., Moran, R. C., Quintana, C., Cañas, C., & Celi, J. (2002). Distribution and diversity of pteridophytes and melastomataceae along edaphic gradients in Yasuni national park, Ecuadorian Amazonia. Biotropica, 34, 516-533. DOI: org/10.1111/j.1744-7429.2002.tb00571.x

Tuomisto, H., Zuquim, G., & Cárdenas, G. (2014). Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography, 37, 001-013. DOI: 10.1111/ecog.00770

Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285-298. DOI: org/10.2307/1939481

Vormisto, H., Svenning, J. C., Hall, P., & Balslev, H. (2004). Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 92, 577-588. DOI: org/10.1111/j.0022-0477.2004.00904.x

Wright , S. J. (1992). Seasonal drought soil fertility and the species density and tropical forest plants communities. Trends Ecology & Evolution, 7(8), 260-263. DOI: 10.1016/0169-5347(92)90171

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Juan Carlos Copete Maturana, Rodrigo Cámara Leret, Mauricio Sánchez, Henrik Balslev

Downloads

Download data is not yet available.