Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae)
PDF
HTML

Keywords

ACC deaminase
Beijerinckia sp.
indole
Kikuyu grass
PGPR
rhizosphere
ACC deaminasa
Beijerinckia sp.
indol
pasto kikuyo
RPCV
rizósfera

How to Cite

Romero-Perdomo, F., Ocampo-Gallego, J., Camelo-Rusinque, M., & Bonila, R. (2019). Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae). Revista De Biología Tropical, 67(4), 825–832. https://doi.org/10.15517/rbt.v67i4.34029

Abstract

Introduction: The sustainable production of pastures has become a fundamental challenge for the livestock sector where research with plant growth-promoting rhizobacteria as a viable solution, has nearly not been reported. Objective: In this study, we aimed to examine the potential to stimulate growth in Pennisetum clandestinum grass using four isolated bacterial strains from soils obtained from a Colombian tropical silvopastoral system. Methods: We previously identified genetically the strains and characterized two plant growth promoting activities. In addition, we evaluated the growth-promoting effect of the strains in Kikuyo grass under greenhouse conditions. Results: We found that the four bacterial strains were phylogenetically associated with Klebsiella sp. (strains 28P and 35P), Beijerinka sp. (37L) and Achromobacter xylosoxidans (E37), based on partial 16S rRNA gene sequencing. Moreover, the in vitro biochemical assays demonstrated that the strains exhibited some plant growth promoting mechanisms such as 1-aminocyclopropane-1-carboxylic acid deaminase activity and indole compound synthesis. Notably, bacterial inoculation under greenhouse conditions showed a positive influence on P. clandestinum growth. We found a significant (P < 0.05) effect on root and shoot length and shoot dry weight. Shoot length increased by 52 % and 30 % with 37L and 35P compared to those without inoculation treatment. Similarly, the use of 37L and 28P raised shoot dry weight values by 170 % and 131 %, respectively. In root development, inoculation with strains 37L and E37 increased root length by 134 % and 100 %, respectively. Conclusion: Beijerinckia sp. 37L was the most effective of the four strains at increasing P. clandestinum biomass and length.

https://doi.org/10.15517/rbt.v67i4.34029
PDF
HTML

References

Bashan, Y., Alexander, A. K., & de-Bashan, L. E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils, 49(4), 465-79. DOI: https://doi.org/10.1007/s00374-012-0737-7

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. DOI: https://doi.org/10.1186/1475-2859-13-66

Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350. DOI: https://doi.org/10.1007/s11274-011-0979-9

Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46(7), 727-738. DOI: https://doi.org/10.1007/s00374-010-0480-x

Criollo, P. J., Obando, M., Sánchez, L., & Bonilla, R. (2012). Effect of plant growth-promoting rhizobacteria (PGPR) associated to Pennisetum clandestinum in the altiplano cundiboyacense. Revista Corpoica Ciencia y Tecnología Agropecuaria, 13, 189-95.

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. DOI: https://doi.org/10.1016/J.MICRES.2013.09.009

Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793-96. DOI: http://www.ncbi.nlm.nih.gov/pubmed/16534942

Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016, 1-10. DOI: https://dx.doi.org/10.1155/2016/6284547

Hungria, M., Nogueira, M. A., & Silva-Araujo, R. (2016). Inoculation of Brachiaria Spp. with the plant growth-promoting bacterium Azospirillum Brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221, 125-31. DOI: https://doi.org/10.1016/j.agee.2016.01.024

Kloepper, J. W., & Schroth, M. N. (1978). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria II, Station de Pathologie Vegetale et Phytobacteriologie, 2, 879-882.

Majeed, A., Kaleem-Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 1-10. DOI: https://doi.org/10.3389/fmicb.2015.00198

Mejía-Taborda, A. C., Ochoa-Ochoa, R., & Medina-Sierra, M. (2014). Efecto de diferentes dosis de fertilizante compuesto en la calidad del pasto kikuyo (Pennisetum clandestinum Hochst. ex Chiov.). Pastos y Forrajes, 37(1), 31-37. DOI: http://www.redalyc.org/pdf/2691/269131241004.pdf

Moreno, A. E., Rojas-Tapias, D. F., & Bonilla, R. (2011). Aplicación de diseños estadisticos secuenciales en la identificacion de fuentes nutricionales para Azotobacter choroococcum AC1. Revista Corpoica Ciencia y Tecnología Agropecuaria, 12, 151-157. DOI: 10.21930/rcta. vol12_num2_art:226

Muscolo, A., Panuccio, M. R., & Eshel, A. (2013). Ecophysiology of Pennisetum clandestinum: A valuable salt tolerant grass. Environmental and Experimental Botany, 92, 55-63.

Nascimento, F. X., Rossi, M. J., Soares, C. R. F. S., McConkey, B. J., & Glick, B. R. (2014). New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE, 9(6), e99168. DOI: https://doi.org/10.1371/journal.pone.0099168

Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51(4), 403-15. DOI: https://doi.org/10.1007/s00374-015-0996-1

Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264-72. DOI: https://doi.org/10.1016/J.APSOIL.2012.01.006

Rojas-Tapias, D., Bonilla, R., & Dussán, J. (2014). Effect of inoculation and co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water, Air, & Soil Pollution, 225(12), 2232. DOI: https://doi.org/10.1007/s11270-014-2232-2

Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D., & Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiología, 49(4), 377-383. DOI: https://doi.org/10.1016/j.ram.2017.04.006

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932. DOI: https://doi.org/10.1073/pnas.0730845100

Sidari, M., Panuccio, M. R., & Muscolo, A. (2004). Influence of acidity on growth and biochemistry of Pennisetum clandestinum. Biologia Plant, 48(1), 133-36.

Sudhakar, P., Chattopadhyay, G. N., Gangwar, S. K., & Ghosh, J. K. (2000). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). Journal of Agricultural Science, 134, 227-34.

Sukumar, P., Legué, V., Vayssiêres, A., Martin, F., Tuskan, G. A., & Kalluri, U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant, Cell & Environment, 36(5), 909-919. DOI: https://doi.org/10.1111/pce.12036

Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 1-10. DOI: https://doi.org/10.3389/fpls.2017.00049

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Felipe Romero-Perdomo, Jhonnatan Ocampo-Gallego, Mauricio Camelo-Rusinque, Ruth Bonila

Downloads

Download data is not yet available.