Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Relación especie-área y distribución de la abundancia de especies en una comunidad vegetal de un inselberg tropical: efecto del tamaño de los parches
PDF
HTML

Keywords

community assembly
geometric series
power law
rarefaction
richness
vegetation patches.

How to Cite

Villa, P. M., de Siqueira Cardinelli, L., Magnago, L. F., Heringer, G., Venâncio Martins, S., Viana Campos, P., Rodrigues, A. C., Viana Neri, A., & Alves Meira-Neto, J. A. (2018). Relación especie-área y distribución de la abundancia de especies en una comunidad vegetal de un inselberg tropical: efecto del tamaño de los parches. Revista De Biología Tropical, 66(2), 937–951. https://doi.org/10.15517/rbt.v66i2.33424

Abstract

Species-area relation and species abundance distribution in a plant community on a tropical inselberg: effect of patch size. Although inselbergs are iconic rock outcrops with a high biogeographic value, little is known about drivers responsible for the plant community assembly. The aim of this research was to evaluate how the patch size distribution of vegetation influences the species-area relationship and species abundance distribution of a community in an inselberg of the “Piedra La Tortuga” Natural Monument of the Guayana region, Venezuela. In this context, three research questions were established: What is the effect of patch size on species richness? What species-area model (SAR) has the best fit in those vegetation patches? How is the distribution of species abundances (SADs) induced by the patch size distribution? A stratified random sampling was performed in patches ranging from 0.34 to 14.8 m2, totaling 40 sampling units (226 m2). All individuals found in the 40 patches were identified at species level. The floristic composition in the different samples was represented by 19 families, 22 genera and 24 species, of which 50 % are endemic to inselbergs and two, are threatened of extinction. Two groups of patch sizes were identified (large 8-15 m2 and small ≤ 7.9 m2) in relation to the abundance and composition of species. The species accumulation curves for each patch size group show a contrasting tendency with marked differences in the observed richness among patch size groups. The curves of the SADs models had a significant adjustment of the geometric series in the two categories of patches. The SAR model of the power function presented the best species-area adjustments, where the increase in patch area accounted for 82 % of the variation in the increase in the number of species. The results of this study demonstrate for the first time how vegetation patches of a tropical inselberg have a strong influence on richness, abundance distribution and species composition. Likewise, it was determined that the SAD geometric model presented the best fit in the community as a function of patch size as a resource indicator, where the abundance of a species can be equivalent to a proportion of the space occupied. It is also presumed that changes in patch sizes could be associated with nutrient and water availability, as has been demonstrated in other dryland environments. In some studies it has been argued that variation in species composition among vegetation profiles of tropical inselbergs is mainly conditioned by habitat structure and water deficit. However, it had not been discussed how the size of patches of vegetation has an effect on richness. SADs and SAR analyzes can provide complementary explanations on community assembly in inselbergs. Rev. Biol. Trop. 66(2): 937-951. Epub 2018 June 01.

 

https://doi.org/10.15517/rbt.v66i2.33424
PDF
HTML

References

Alroy, J. (2015). The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. Science Advance, 1, 1-8.

Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6, 1109-1122.

Arrhenius, O. (1921). Species and area. Journal of Ecology, 9, 95-99.

Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V., & Lejeune, O. (2006). Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. Journal of Ecology, 94, 537-547.

Barbier, N., Bellot, J., Couteron, P., Parsons, A. J., & Mueller, E. N. (2014). Short-range ecogeomorphic processes in drylands systems. In E. N. Mueller, J. Wainwright, A. J. Parsons, & L. Turnbull (Eds.), Patterns of land degradation in drylands: understanding self-organised ecogeomorphic systems (pp.85-101). Dordrecht, The Netherlands: Springer-Verlag.

Barthlott, W., Porembski, S., Szarzynski, J., & Mund, P. (1993). Phytogeography and Vegetation of Tropical Inselbergs. In J. L. Guillaumet, M. Bein, & H. Puig (Eds), Actes du colloque international de phytogéographie tropicale (pp. 15-24), Paris: ORSTOM editions.

Biedinger, N., Porembski, S., & Barthlott, W. (2000). Vascular Plants on Inselbergs: Vegetative and Reproductive Strategies. In S. Porembski, & W. Barthlott (Eds.), Inselbergs - Biotic diversity of isolated rock outcrops in tropical and temperate regions (pp. 117-140). Berlin, Heidelberg: Springer-Verlag.

Borda-de-Água, L., Borges, P. A. V., Hubbell, S. P., & Pereira, H. M. (2012). Spatial scaling of species abundance distributions. Ecography, 35, 549-556.

Bremer, H., & Sander, H. (2000). Inselbergs: Geomorphology and Geoecology. In S. Porembski, & W. Barthlott (Eds.), Inselbergs - Biotic diversity of isolated rock outcrops in tropical and temperate regions (pp. 7-34). Berlin, Heidelberg: Springer-Verlag.

Cáceres, Y., Llambí, L. D., & Rada, F. (2014). Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecology and Diversity, 8(2), 147-161.

Carrión, J. F., Gastauer, M., Mesquita, N., & Meira-Neto J. A. A. (2017). Facilitation as a driver of plant assemblages in Caatinga. Journal of Arid Environments, 142, 50-58.

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Aaron M. E. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45-67.

Chiarucci, A., Bacaro, G., Rocchini, D., Ricotta, C., Palmer, M. W., & Scheiner, S. M. (2009). Spatially constrained rarefaction: incorporating the autocorrelated structure of biological communities into sample-based rarefaction. Community ecology, 10(2), 209-214.

Chiarucci, A., Viciani, D., Winter, C., & Diekmann, M. (2006). Effect of productivity on species-area curves in herbaceous vegetation: evidence of experimental and observational data. Oikos, 115, 475-483.

Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal Plant Ecology, 5, 3-21.

Colwell, R. K., Mao, C. X., & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85, 2717-2727.

Crawley, M. J., & Harral, J. E. (2001). Scale dependence in plant biodiversity. Science, 291, 864-868.

Dolnik, C., & Breuer, M. (2008). Scale dependency in the species-area relationship of plant communities. Folia Geobotanica, 43, 305-318.

Esteves, J., & Dumith, D. A. (1997). Diversidad biológica en Amazonas: bases para una estrategia de gestión. Caracas: SADA-Amazonas-PNUD y Fundación polar.

Fattorini, S., Rigal, F., Cardoso, P., & Borges, P. A. V. (2016). Using species abundance distribution models and diversity indices for biogeographical analyses. Acta Oecologica, 70, 21-28.

Gleason, H. A. (1922). On the relation between species and area. Ecology, 3, 158-162.

Götzenberger, L., Bello, F., Brathen, K. A., Davison, J., Dubuis, A., Guisan, A., Leps, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, M. (2012). Ecological assembly rules in plant communities approaches, patterns and prospects. Biological Reviews, 87, 111-127.

Gröger, A. (1994). Análisis preliminar de la flórula y vegetación del Monumento Natural “Piedra la Tortuga”, estado Amazonas, Venezuela. Acta Botánica Venezuelica, 17, 128-153.

Gröger, A. (2000). Flora and vegetation of inselbergs of Venezuelan Guayana. In S. Porembski, & W. Barthlott (Eds.), Inselbergs - Biotic diversity of isolated rock outcrops in tropical and temperate regions (pp. 291-314). Berlin, Heidelberg: Springer-Verlag.

Gröger, A., & Huber, O. (2007). Rock outcrop habitats in the Venezuelan Guayana lowlands: their main vegetation types and floristic components. Revista Brasileira de Botânica, 30(4), 599-609.

Guilhaumon, F., Mouillot, D., & Gimenez, O. (2010). mmSAR: an R-package for multimodel species-area relationship inference. Ecography, 33(2), 420-424.

He, F., & Condit, R. (2007). The distribution of species: occupancy, scale, and rarity. In D. Storch, P. Marquet, & J. H. Brown (Eds.), Scaling Biodiversity (pp. 32-50). Cambridge: Cambridge University Press.

Huber, O. (1995). Conservation of the Venezuelan Guayana. In J. A. Steyermark, P. E. Berry, & B. K. Holst (Eds.), Flora of the Venezuelan Guayana (pp. 20-230). Portland, Oregon: Missouri Botanical Garden Press.

Kéfi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., ElAich, A., & Ruiter, P. C. (2007). Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449, 213-217.

Kéfi, S., Rietkerk, M., Roy, M., Franc, A., Ruiter, P. C., & Pascual, M. (2011). Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecology Letters, 14, 29-35.

Kolasa, J., Manne, L. L., & Pandit, S. N. (2012). Species-area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia, 685,135-144.

Llamozas, S., Stefano, R. D., Meier, W., Riina, R., Stauffer, F., Aymard, G., Huber, O., & Ortiz, R. (2003). Libro Rojo de la Flora Venezolana. Caracas, Venezuela: Provita, Fundación Polar, Fundación Instituto Botánico de Venezuela.

Lüttge, U. (1997). Physiological ecology of tropical plants. Berlín, Heidelberg: Springer-Verlag.

Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell Science.

Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species innatural species abundance distributions. Nature, 422, 714-716.

Matthew, A. B., & Maestre, F. T. (2012). Inferring local competition intensity from patch size distributions: a test using biological soil crusts. Oikos, 000, 001-009.

Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F., & Whittaker, R. J. (2016). Island species-area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets, Global Ecology Biogeography, 25, 607-618.

Matthews, T. J., & Whittaker, R. J. (2015). On the species abundance distribution in applied ecology and biodiversity Management. Journal of Applied Ecology, 52(2), 443-454.

McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., … White, E.P. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995-1015.

Meloni, F., Granzotti, C. R. F., Bautista, S., & Martinez, A. S. (2017). Scale dependence and patch size distribution: clarifying patch patterns in Mediterranean drylands. Ecosphere, 8(2), 1-18.

Moreno de Las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J. (2011). Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecological Applications, 21, 2793-2805.

Neri, A. V., Borges, G. R., Meira-Neto, J. A. V., Magnago, L. F., Trotter, I. M., Schaefer, C. E. G., & Porembski, S. (2016). Soil and altitude drive diversity and functioning of Brazilian Páramos (campo de altitude), Journal of Plant Ecology, 10, 771-779.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner H. (2017). Vegan: Community Ecology Package. R package version 2.4-3. Retrieved from https://cran.r-project.org/web/packages/vegan/vegan.pdf

Pan, X. (2013). Fundamental equations for species-area theory. Scientific Reports, 3, 1-3.

Pan, X. (2016). Application of fundamental equations to species-area theory. BMC Ecology, 16, 1-8.

Porembski, S. (2000). Biodiversity of Terrestrial Habitat Islands - the Inselbergs Evidence. In S. Porembski, & W. Barthlott (Eds.), Inselbergs - Biotic diversity of isolated rock outcrops in tropical and temperate regions (pp. 507-513). Berlin, Heidelberg: Springer-Verlag.

Porembski, S. (2007). Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Revista Brasileira de Botânica, 30(4), 579-586.

Porembski, S., & Barthlott, W. (2000). Granitic and Gneissic Outcrops (Inselbergs) as Centers of Diversity for Desiccation-Tolerant Vascular Plants. Plant Ecology, 151, 19-28.

Porembski, S., Silveira, F. A. O, Fiedler, L. P., Watve, A., Rabarimanarivo, M., Kouame, F., &. Hopper, S. D. (2016). Worldwide destruction of inselbergs and related rock outcrops threatens a unique ecosystem. Biodiversity and Conservation, 25(13), 2827-2830. DOI: 10.1007/s10531-016-1171-1

Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 611-627.

Qian, H., White, P. S., & Song, J. S. (2007). Effects of regional vs. ecological factors on plant species richness: an intercontinental analysis. Ecology, 88(6), 1440-1453.

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org/

Ricklefs, R. E., & Lovette, I. J. (1999). The role of island area per se and habitat diversity in the species-area relationship of four lesser Antillean faunal groups. Journal of Animal Ecology, 68, 1142-1160.

Ricklefs, R. E., Qian, H., & White, P. S. (2004). The region effect on mesoscale plant species richness between eastern Asia and eastern North America. Ecography, 27, 129-136.

Rietkerk, M., & van de Koppel, J. (2008). Regular pattern formation in real ecosystems. Trends in Ecology and Evolution, 23, 169-175.

Rosenzweig, M. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.

Sarthou, C., Kounda-Kiki, C., Vaçulik, A., Mora, P., & Ponge, J. F. (2009). Successional patterns on tropical inselbergs: a case study on the Nouragues inselberg (French Guiana). Flora, 204, 396-407.

Sizling, A. L., Storch, D., Sizlingová, E., Reif, J., & Gaston, K.J. (2009). Species abundance distribution results from a spatial analogy of central limit theorem. Proceedings of the National Academy of Sciences of the United States of American, 106(16), 6691-6695.

Steinmann, K., Eggenberg, S., Wohlgemuth, T., Linder, H. P., & Zimmermann, N. E. (2011). Niches and noise-Disentangling habitat diversity and area effect on species diversity. Ecological Complexity, 8, 313-319.

Storch, D. (2016). The theory of the nested species-area relationship: geometric foundations of biodiversity scaling. Journal Vegetation Science, 27(5), 880-891.

Svejcar, L. N., Bestelmeyer, B. T., Duniway, M. C., & James, D. K. (2015). Scale-dependent feedbacks between patch size and plant reproduction in desert grassland. Ecosystems, 18, 146-153.

Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75(1), 2-16.

Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80 (5), 1455-1474.

Tjørve, E. (2009) Shapes and functions of species-area curves (II): a review of new models and parameterizations. Journal of Biogeography, 36, 1435-1445.

Tjørve, E. (2012). Arrhenius and Gleason revisited: new hybrid models resolve an old controversy. Journal of Biogeography, 39, 629-639.

Tjørve, E., & Tjørve, K. M. C. (2008). The species-area relationship, self-similarity, and the true meaning of the z-value. Ecology, 89, 3528-3533.

Ulrich, W., Ollik, M., & Ugland, K. I. (2010). A meta-analysis of species-abundance distributions. Oikos, 119, 1149-1155.

Ulrich, W., Soliveresb, S., Thomas, A. D., Dougilld, A. J., & Maestre, F. T. (2016). Environmental correlates of species rank-abundance distributions in global drylands. Perspectives in Plant Ecology, Evolution and Systematics, 20, 56-64.

Vergnon, R., van Nees, R. H., & Scheffer, M. (2012). Emergent neutrality leads to multimodal species abundance distributions. Nature Communication, 3, 1-6.

Wilber, M. Q., Kitzes, J., & Harte, J. (2015). Scale collapse and the emergence of the power law species-area relationship. Global Ecology and Biogeography, 24(8), 883-895.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.