Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Life history and phenology of Phylloicus pulchrus (Trichoptera: Calamoceratidae) in a tropical rainforest stream of Puerto Rico
PDF
HTML

Keywords

caddisfly
tropical streams
environmental variables
rainfall seasonality
instar determination
body-case relation.

How to Cite

Reyes-Torres, L. J., & Ramírez, A. (2018). Life history and phenology of Phylloicus pulchrus (Trichoptera: Calamoceratidae) in a tropical rainforest stream of Puerto Rico. Revista De Biología Tropical, 66(2), 814–825. https://doi.org/10.15517/rbt.v66i2.33411

Abstract

Caddisflies are abundant, diverse, and important insects in freshwater ecosystems.  However our knowledge on their life history is incomplete, in particular for the Neotropics. The objectives of this study were to describe the life history and phenology of Phylloicus pulchrus in the Luquillo Experimental Forest, Puerto Rico. Eggs and larvae were reared to determine the species lifespan and time in each instar. Larval instars were determined based on a head width vs. pronotal suture length correlation (N= 120). Larvae and benthic leaf litter were sampled monthly at a headwater stream for a year; all specimens were classified into instars based on their case size. Adult P. pulchrus were sampled monthly for a year with a light trap and at various times with a Malaise trap. Monthly environmental variables were related to species and sex abundance. There was a gradient of egg development where eggs (within compound masses) closest to the water were more developed. There were five larval instars and reared larvae showed longer development times and more variable body measurements in later instars. The best correlation for larval instar determination was case length-head width (Pearson= 0.90, P= 2.2e-16, N= 120). Phylloicus pulchrus has a multivoltine life cycle, with asynchronous larval development. Adult abundance was low. First to third instar larvae were influenced significantly by rainfall and rainfall seasonality had a negative significant effect on second instar larval abundance (ANOVA= 7.45, P= 0.02).Compound egg masses were probably oviposited by different females that gathered for oviposition. Phylloicus pulchrus follows the predominant developmental characteristic of Trichoptera of having five larval stages. Development times were longer than expected (longest times for a Phylloicus species) and may be an effect of laboratory rearing. The influence of rainfall (and seasonality) on different larval instars highlights the importance of this variable on early larval development. The cause of low adult abundance remains unclear, but may be related to low emergence rates and trap efficiency. Rev. Biol. Trop. 66(2): 814-825. Epub 2018 June 01.

 

https://doi.org/10.15517/rbt.v66i2.33411
PDF
HTML

References

Almeida, G., & Marinoni, L. (2000). Abundância e sazonal idade das espécies de Leptoceridae (Insecta, Trichoptera) capturadas com armadilha luminosa no Estado do Paraná, Brasil. Revista Brasileira de Zoologia, 17(2), 347-359. doi: 10.1590/S0101-81752000000200005

Bispo, P., Oliveira, L., Crisci-Bispo, V., & Sousa, K. (2004). Environmental factors influencing distribution and abundance of trichopteran larvae in Central Brazilian mountain streams. Studies on Neotropical Fauna and Environment, 39(3), 233-237. doi: 10.1080/01650520412331271710

Cardona-Rivera, G. A., & Ramírez, A. (2016) Predation of Telebasis vulnerata (Odonata: Coenagrionidae) eggs by detritivorous caddisfly larva, Phylloicus pulchrus (Trichoptera: Calamoceratidae). International Journal of Odonatology, 19(4), 253-256. doi: 10.1080/13887890.2016.1258372

Celina, M., & Rueda, P. (2010). Trophic analysis of two species of Atopsyche (Trichoptera: Hydrobiosidae). Limnologica, 40, 61-66. doi: 10.1016/j.limno.2008.07.004

Esselman, P. C., & Allan, J. D. (2010). Relative influences of catchment‐and reach‐scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish, 19(3), 439-454. doi: 10.1111/j.1600-0633.2010.00430.x

Flint, O. S. (1964). The Caddisflies (Trichoptera) of Puerto Rico (Report No. 40). Puerto Rico: University of Puerto Rico (Río Piedras Campus) Agricultural Experiment Station.

Flint Jr, O. S., & Masteller, E. C. (1993). Emergence composition and phenology of Trichoptera from a tropical rainforest stream at El Verde, Puerto Rico. Journal of the Kansas Entomological Society, 140-150.

Jackson, J., & Sweeney, B. (1995). Egg and Larval Development Times for 35 Species of Tropical Stream Insects from Costa Rica. Journal of the North American Benthological Society, 14(1), 115-130. doi: 10.2307/1467728

Jacobsen, D., Cressa, C., Mathooko, J., & Dudgeon, D. (2008) Chapter 4: Macroinvertebrates: Composition, Life Histories and Production. Tropical Stream Ecology, 65-105.

Lancaster, J., Downes, B. J., & Reich, P. (2003). Linking landscape patterns of resource distribution with models of aggregation in ovipositing stream insects. Journal of Animal Ecology, 72(6), 969-978. doi: 10.1046/j.1365-2656.2003.00764.x

Lund, J., Wissinger, S., & Peckarsky, B. (2016). Caddisfly behavioral responses to drying cues in temporary ponds: implications for effects of climate change. Freshwater Science, 35(2), 619-630. doi: 10.1086/685583

Luquillo Long Term Ecological Research data sets. (2010-2017). evmn2010-current.csv. [Data file]. Retrieved from http://luq.lternet.edu/data/luqmetadata17

Luquillo Long Term Ecological Research data sets. (2010-2017). evmx2010-current.csv. [Data file]. Retrieved from http://luq.lternet.edu/data/luqmetadata16

Luquillo Long Term Ecological Research data sets. (2010-2017). evra2010-current.csv. [Data file]. Retrieved from http://luq.lternet.edu/data/luqmetadata14

Marinoni, L., & Almeida, G. (2000). Abundância e sazonalidade das espécies de Hydropsychidae (Insecta, Trichoptera) capturadas em armadilha luminosa no Estado do Paraná, Brasil. Revista Brasileira de Zoologia, 17(1), 283-299. doi: 10.1590/S0101-81752000000200005

Mendez, P. K., & Resh, V. H. (2007). What aspects of the life history of Trichoptera have been studied? In J. Buenos-Soria, R. Barba-Álvarez, & B. Armitage (Eds.), Proceedings of the XIIth International Symposium on Trichoptera (pp 191-195). Ohio: The Caddis Press.

McDowell, W. H., Scatena, F. N., Waide, R. B., Brokaw, N., Camilo, G. R., Covich, A. P., & Zimmerman, J. (2012). Geographic and Ecological Setting of the Luquillo Mountains. In N. Brokaw, T. A. Crowl, A. E. Lugo, W. H. McDowell, F. N. Scatena, R. B. Waide, & M. R. Willig (Eds.), A Caribbean Forest Tapestry, The multidimensional nature of disturbance and response (pp.72-163). New York: Oxford University Press.

McElravy, E. P., Wolda, H., & Resh, V. H. (1982). Seasonality and annual variability of caddisfly adults (Trichoptera) in a “non-seasonal” tropical environment. Archiv fur Hydrobiologie, 94, 302-317.

Morse, J. C. (2017). Trichoptera World Checklist. Retrieved from http://entweb.clemson.edu/database/trichopt/index.htm

Norwood, J. C., & Stewart, K. W. (2002). Life history and case-building behavior of Phylloicus ornatus (Trichoptera: Calamoceratidae) in two spring-fed streams in Texas. Annals of the Entomological Society of America, 95(1), 44-56. doi: 10.1603/0013-8746(2002)095[0044:LHACBB]2.0.CO;2

Prather, A. L. (2003). Revision of the neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa, 275(1), 1-214. doi: 10.11646/zootaxa.435.1.1

Rasband, W. S. (2016). ImageJ (Version 1.50e) [Java 1.8.0_121]. Available from https://imagej.nih.gov/ij/

Reich, P., & Downes, B. J. (2003). Experimental evidence for physical cues involved in oviposition site selection of lotic hydrobiosid caddis flies. Oecologia, 136(3), 465-475. doi: 10.1007/s00442-003-1284-6

Rincón, J., & Covich, A. (2014). Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream. Revista de Biología Tropical, 62(Suppl. 2), 143-154.

Rincón, J., & Martínez, I. (2006). Food quality and feeding preferences of Phylloicus sp. (Trichoptera: Calamoceratidae). Journal of the North American Benthological Society, 25(1), 209-215. doi: 10.1899/0887-3593(2006)25[209:FQAFPO]2.0.CO;2

RStudio Team. (2016). RStudio (Version 3.4.1). Retrieved from http://www.rstudio.com/

Sánchez-Ruiz, J. A., Ramírez, A., & Kelly, S. P. (2017). Decreases in the size of riparian orb webs along an urbanization gradient. Journal of Arachnology, 45, 248-252. doi: 10.1636/JoA-S-16-076.1

Schellekens, J., Scatena, F. N., Bruijnzeel, L. A., Van Dijk, A. I. J. M., Groen, M. M. A., & Van Hogezand, R. J. P. (2004). Stormflow generation in a small rainforest catchment in the Luquillo Experimental Forest, Puerto Rico. Hydrological Processes, 18(3), 505-530. doi: 10.1002/hyp.1335

Shama, L. (2007). Population persistence in temporary streams: plasticity and gene flow in an alpine caddisfly (Doctoral Thesis: ETH No. 16959). Swiss Federal Institute of Technology, Zürich.

Springer, M. (2010). Macroinvertebrados de Agua Dulce de Costa Rica I, Capítulo 7: Trichoptera. Revista de Biología Tropical, 58(4), 151-181.

United States Naval Observatory. (2016). Complete Sun and Moon Data for one Day [Data file]. Retrieved from http://aa.usno.navy.mil/data/docs/RS_OneDay.php

Wiggins, G. B. (2004). Caddisflies, The Underwater Architects. Toronto, Canada: University of Toronto Press Inc.

Zamora-Muñoz, C., & Svensson, B. (1996). Survival of caddis larvae in relation to their case material in a group of temporary and permanent pools. Freshwater Biology, 36, 23-31. doi: 10.1046/j.1365-2427.1996.00057.x

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Revista de Biología Tropical

Downloads

Download data is not yet available.