Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Galápagos macroalgae: A review of the state of ecological knowledge
PDF
HTML

Keywords

Galapagos
macroalgae
ENSO
primary productivity
biogeography
Galápagos
algas marinas
ENSO
productividad primaria
biogeografía

How to Cite

Tompkins, P., & Wolff, M. (2017). Galápagos macroalgae: A review of the state of ecological knowledge. Revista De Biología Tropical, 65(1), 375–392. https://doi.org/10.15517/rbt.v65i1.18139

Abstract

Previous work has highlighted the critical role of macroalgal productivity and dynamics in supporting and structuring marine food webs. Spatio-temporal variability in macroalgae can alter coastal ecosystems, a relationship particularly visible along upwelling-influenced coastlines. As a result of its equatorial location and nutrient rich, upwelling-influenced waters, the Galápagos Archipelago in the East Pacific, hosts a productive and biodiverse marine ecosystem. Reports and collections of macroalgae date back to the Beagle voyage, and since then, more than three hundred species have been reported. However, their ecology and functional role in the ecosystem is not well understood. According to various disparate and in part anecdotal sources of information, abundant and diverse communities exist in the Western regions of the archipelago, the North is essentially barren, and in the central/South abundance and distribution is variable and less well defined. Both oceanographic conditions and herbivore influence have been theorized to cause this pattern. Extensive changes in macroalgal productivity and community composition have occurred during strong ENSO events, and subsequent declines in marine iguana (an endemic and iconic grazer) populations have been linked to these changes. Iguanas are only one species of a diverse and abundant group of marine grazers in the system, highlighting the potentially important role of macroalgal productivity in the marine food web. This review represents a first compilation and discussion of the available literature and presents topics for future research.

https://doi.org/10.15517/rbt.v65i1.18139
PDF
HTML

References

Adey, W., & Steneck, R. (2001). Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance weighted test for benthic marine algae. Journal of Phycology, 37, 677-698.

Amado-Filho, G. M., Maneveldt, G., Manso, R. C., Marins-Rosa, B. V., & Guimarães, S. M. (2007). Estructura de los mantos de rodolitos de 4 a 55 metros de profundidad en la costa sur del estado de Espírito Santo, Brasil. Ciencias Marinas, 33, 399-410.

Anderson, T. (2001). Predator responses, prey refuges, and density-dependent mortality of a marine fish. Ecology, 82, 245-257.

Andrew, N. L. (1993). Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia. Ecology, 74, 292-302.

Barnes, K. A. (1999). The influence of ice on polar nearshore benthos. Journal of the Marine Biological Association of the United Kingdom, 79, 401-407.

Bell, P. R. F. (1992). Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Research, 26, 553-568.

Bertness, M. D., Leonard, G., Levine, J. M., Schmidt, P., & Ingraham, A. O. (1999). Habitat modification by algal canopies: Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology, 80, 2711-2726.

Bodkin, J. (1988). Effects of kelp forest removal on associated fish assemblages in central California. Journal of Experimental Marine Biology and Ecology, 117, 227-238.

Brandt, M., Witman, J. D., & Chiriboga, A. I. (2012). Influence of a dominant consumer species reverses at increased diversity. Ecology, 93, 868-878.

Brawley, S. H. (1992). Mesoherbivores. In D. M. John, S. J. Hawkings & J. H. Price (Eds.). Plant-Animal Interactions in the Marine Benthos (pp. 253-263). Oxford, UK: Clarendon Press.

Bustamante, R., & Branch, G. (1996). Large scale patterns and trophic structure of southern African rocky shores: the roles of geographic variation and wave exposure. Journal of Biogeography, 23, 339-351.

Carpenter, C. (1966). The marine iguana of the Galápagos Islands, it's behavior and ecology. Proceedings of the California Academy of Sciences, Fourth Series, 34, 329-376.

Carpenter, R. C. (1985). Sea urchin mass-mortality: Effects on reef algal abundance, species composition, and metabolism and other coral reef herbivores. Proceedings of the Fifth International Coral Reef Symposium,4, 53-60.

Carr, L., & Bruno, J. (2013). Warming increases the top-down effects on metabolism of a subtidal herbivore. PeerJ Computer Science, 1, e109.

Carrión-Cortez, J. A., Zárate, P., & Seminoff, J. A. (2010). Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. Journal of the Marine Biological Association of the United Kingdom, 90, 1005-1013.

Chapman, A. R., & Johnson, C. R. (1990). Disturbance and organization of macroalgal assemblages in the Northwest Atlantic. Hydrobiologia, 192, 77-121.

Choat, J. (1991). The biology of herbivorous fishes on coral reefs. In P. Sale (Ed.), The Ecology of Fishes on Coral Reefs (pp. 120-155). San Diego, Ca.: Academic Press, Inc.

Coston-Clements, L., Settle, L. R., Hoss, D. E., & Cross, F. A. (1991). Utilization of the Sargassum habitat by marine invertebrates and vertebrates: a review. NOAA Technical Memorandum NMFS-SEFSC-296, 32.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London, England: John Murray.

Dawson, E. Y. (1964). Marine Algae of the Galapagos. Noticias de Galápagos, 4, 11-12.

Dayton, P. K. (1985). Ecology of kelp communities. Annual Review of Ecology, Evolution, and Systematics, 16, 215-245.

Dayton, P. K. (1975). Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecological Monographs, 45, 137-159.

de Guimaraens, M. A., & Coutinho, R. (1996). Spatial and temporal variation of benthic marine algae at the Cabo Frio upwelling region, Rio de Janeiro, Brazil. Aquatic Botany, 52, 283-299.

Diaz-Pulido, G., & Garzón-Ferreira, J. (2002). Seasonality in algal assemblages on upwelling-influenced coral reefs in the Colombian Caribbean. Botanica Marina, 45, 284-292.

Earle, S. (1980). Marine plant and animal distributions in relation to the Galapagos nearshore thermocline. Noticias de Galápagos, 32, 16-18.

Edgar, G. J., Banks, S., Farina, J. M., Calvopina, M., & Martinez, C. (2004). Regional biogeography of shallow reef fish and macro‐invertebrate communities in the Galapagos archipelago. Journal of Biogeography, 31, 1107-1124.

Edgar, G. J., Banks, S. A., Brandt, M., Bustamante, R. H., Chiriboga, A., Earle, S. A., … Wellington, G. M. (2010). El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biology, 16, 2876-2890.

Fenwick, G. D. (1976). The effect of wave exposure on the amphipod fauna of the alga Caulerpa brownii. Journal of Experimental Marine Biology and Ecology, 25, 1-18.

Foster, M. S. (1975). Algal succession in a Macrocystis pyrifera forest. Marine Biology, 32, 313-329.

Garske, L. (2002). Macroalgas Marinas. In E. Danulat & G. J. Edgar, Reserva Marina de Galápagos: Linea Base de la Biodiversidad (pp. 419-439). Puerto Ayora, Santa Cruz, Galapagos: Fundacion Charles Darwin/Servicio Parque Nacional Galapagos.

Glasby, T., & Connell, S. (2001). Orientation and position of substrata have large effects on epibiotic assemblages. Marine Ecology Progress Series, 214, 127-135.

Glynn, P. W. (1988). El Nino-Southern Oscillation 1982-1983: Nearshore population, community, and ecosystem responses. Annual Review of Ecology, Evolution, and Systematics, 19, 309-345.

Glynn, P. W., & Wellington, G. M. (1983). Corals and Coral Reefs of the Galápagos Islands. Berkeley, Ca.: University of California Press.

Graham, M. H. (2004). Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems, 7, 341-357.

Graham, M., Kinlan, B., Druehl, L., Garske, L., & Banks, S. (2007). Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proceedings of the National Academy of Sciences, 104, 16576-16580.

Grehan, J. (2001). Biogeography and evolution of the Galapagos: integration of the biological and geological evidence. Biological Journal of the Linnean Society, 74, 267-287.

Haroun, R. J., Prud'homme van Reine, W. F., Muller, D. G., Serrao, E., & Herrera, R. (1993). Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships. Helogolander Meersuntersuchungen, 47, 125-143.

Harris, M. (1969). Breeding seasons of sea-birds in the Galapagos Islands. Journal of Zoology, 159, 145-165.

Harrold, C., Light, K., & Lisin, S. (1998). Organic enrichment of submarine-canyon and continental-shelf benthic communities by macroalgal drift imported from nearshore kelp forests. Limnology and Oceanography, 43, 669-678.

Hernández, J., Clemente, C., Sangil, C., & Brito, A. (2008). The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): an spatio-temporal approach. Marine Environmental Research, 66, 259-270.

Houvenaghel, G. T. (1984). Oceanographic setting of the Galapagos Islands. In R. Perry (Ed.), Key Environments, Galapagos (pp. 43-54). New York: Pergamon Press.

Irving, A., & Witman, J. (2009). Positive effects of damselfish override negative effects of urchins to prevent an algal habitat switch. Journal of Ecology, 97, 337-347.

IUCN. (2016). The IUCN Red List of Threatened Species. Version 2016-1. Retrieved from http://www.iucnredlist.org

Kendrick, G. A. (1986). The benthic marine algal flora. Perto Ayora, Santa Cruz, Galápagos: Chales Darwin Foundation.

Kendrick, G. A. (1988a). Preliminary survey of the marine benthos of the western parts of Isla Isabela and Isla Fernandina (Unpublished trip report). Galápagos, Ecuador: Charles Darwin Research Station.

Kendrick, G. A. (1988b). Where have all the algae gone? Noticias de Galápagos, 46, 16-17.

Kerswell, A. P. (2006). Global biodiversity patterns of benthic marine algae. Ecology, 87, 2479-2488.

Krumhansl, K. A., & Scheibling, R. E. (2012). Production and fate of kelp detritus. Marine Ecology Progress Series, 467, 281-302.

Krutwa, A. (2014). Small-scale differences in tropical subtidal rocky reef communities of Floreana Island, Galapagos (Ph.D. Dissertation). University of Bremen, Germany.

Laurie, A. (1985). The effect of the 1982–1983 El Nino on marine iguanas. In G. Robinson, & E. del Pino, El Niño in the Galápagos Islands: The 1982-1983 event (pp. 199-209). Quito, Ecuador: Charles Darwin Foundation.

Leighton, D. L. (1971). Grazing activities of benthic invertebrartes in southern California kelp beds. Nova Hedwigia Beihefte, 32, 421-453.

Lilley, S., & Schiel, D. (2006). Community effects following the deletion of a habitat-forming alga from rocky marine shores. Oecologia, 148, 672-681.

Littler, M. M., & Arnold, K. E. (1982). Primary productivity of marine macroalgal functional-form groups from southwestern North America. Journal of Phycology, 18, 307-311.

Littler, M. M., Littler, D. S., Blair, S. M., & Norris, J. N. (1985). Deepest known plant life discovered on an uncharted seamount. Science, 227, 57-59.

Lobban, C. S., & Harrison, P. J. (1997). Seaweed Ecology and Physiology. Cambridge: Cambridge University Press.

Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. Science, 182, 975-981.

Mann, K. H. (1977). Destruction of kelp-beds by sea-urchins: a cyclical phenomenon or irreversible degradation? Helgoländer Wissenschafteliche Meersuntersuchungen, 30, 455-467.

McCosker, J. J., Taylor, L., & Warner, R. R. (1978). Ichthyological studies at Galapagos. Noticias de Galápagos, 27, 13-15.

Norris, J. (1978). Smithsonian Institution’s Galapagos marine algal program. Noticias de Galápagos, 27, 24-25.

North, W. J., & Pearse, J. S. (1970). Sea urchin population explosion in southern California coastal waters. Science, 167, 209.

Ojeda, F. P., & Munoz, A. A. (1999). Feeding selectivity of the herbivorous fish Scartichthys viridis: effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Marine Ecology Progress Series, 184, 219-229.

Okey, T. A., Banks, S., Born, A. F., Bustamante, R. H., Calvopiña, M., Edgar, G. J., Espinoza, E., Farina, J. M., Garske, L., Reck, G., Salazar, S., Shepard, S., Toral-Granda, V., & Wallem, P. (2004). A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecological Modelling, 172, 383-401.

Ogden, J., & Lobel, P. (1978). The role of herbivorous fishes and urchins in coral reef communities. Environmental Biology of Fish, 3, 49-63.

Palacios, D. M. (2003). Oceanographic conditions around the Galápagos Archipelago and their influence on cetacean community structure. Corvallis, Oregon: Oregon State University.

Palacios, D. M. (2004). Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 43-57.

Paul, V. J., & Hay, M. E. (1986). Seaweed susceptibility to herbivory: chemical and morphological correlates . Marine Ecology Progress Series, 33, 255-264.

Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69, 285-317.

Polis, G. A., & Hurd, S. D. (1996). Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. The American Naturalist, 147, 396-423.

Poore, A. G. B., Campbell A. H., Coleman, R. A., Edgar, E. G., Jormalainen, V., Reynolds, P. L., Sotka, E. E., Stachowicz, J. J., Taylor, R. B., Vanderklift, M. A., & Duffy, J. E. (2012). Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 15, 912-922.

Rasher, D. B., Engel, S., Bonito, V., Fraser, G. J., Monotoya, J. P., & Hay, M. E. (2012). Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. Oecologia, 169, 187-198.

Rassmann, K., Tautz, D., Trillmich, F., & Gliddon, C. (1997). The microevolution of the Galápagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analyses. Molecular Ecology, 6, 437-452.

Robinson, G., & del Pino, E. (1985). El Niño in the Galápagos Islands: The 1982-1983 event. Quito, Ecuador: Charles Darwin Foundation.

Ruiz, D., & Wolff, M. (2011). The Bolivar Channel ecosystem of the Galapagos Marine Reserve: Energy flow structure and role of keystone groups. Journal of Sea Research, 66, 123-134.

Ruttenberg, B. (2001). Effects of artisanal fishing on marine communities in the Galápagos Islands. Conservation Biology, 15, 1691-1699.

Sangil, C., Sansón, M., & Afonso-Carrillo, J. (2011). Spatial variation patterns of subtidal seaweed assemblages along a subtropical oceanic archipelago: Thermal gradient vs. herbivore pressure. Estuarine, Coastal and Shelf Science, 94, 322-333.

Sansón, M., Reyes, J., Afonso-Carrillo, J., & Muñoz, E. (2002). Sublittoral and deep-water red and brown algae new from the Canary Islands. Botanica Marina, 45, 35-49.

Santelices, B., Bolton, J. J., & Meneses, I. (2009). Marine Algal Communities. In J. D. Witman, & K. Roy (Eds.), Marine Macroecology (pp. 153-192). Chicago, USA: University of Chicago Press.

Schils, T., & Coppejans, E. (2003a). Phytogeography of upwelling areas in the Arabian Sea. Journal of Biogeography, 281, 1339-1356.

Schils, T., & Coppejans, E. (2003b). Spatial variation in subtidal plant communities around the Socotra Archipelago and their biogeographic affinities within the Indian Ocean. Marine Ecology Progress Series, 251, 103-114.

Silva, P. (1964). Status of our knowledge of the Galapagos benthic marine algal flora. Papers of the Galapagos International Science Project. The Galápagos Islands Symposium (pp. 67-84). California, USA: University of California Press.

Sonnenholzner, J. I., Ladah, L. B., & Lafferty, K. D. (2009). Cascading effects of fishing on Galapagos rocky reef communities: Reanalysis using corrected data. Marine Ecology Progress Series, 375, 209-218.

Taylor, W. R. (1945). Pacific Marine Algae of the Allan Hancock Expeditions to the Galapagos Islands. Los Angeles, Ca.: The University of Southern California Press.

Taylor, R. (1998). Density, biomass, and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Marine Ecology Progress Series, 172, 37-51.

Trillmich, K. G., & Trillmich, F. (1986). Foraging strategies of the marine iguana, Amblyrhynchus cristatus. Behavioral Ecology and Sociobiology, 18, 259-266.

Underwood , A. J., & Jerknakoff, P. (1984). The effects of tidal height, wave-exposure, seasonality, and rock-pools on grazing and the distribution of intertidal macroalgae in New South Wales. Journal of Experimental Marine Biology and Ecology, 75, 71-96.

Vinueza, L. R., Branch, G. M., Branch, M. L., & Bustamante, R. H. (2006). Top-down herbivory and bottom-up El Nino effects on Galapagos rocky-shore communities. Ecological Monographs, 76, 111-131.

Vinueza, L. R., Menge, B. A., Ruiz, D., & Palacios, D. M. (2014). Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecological Monographs, 84, 411-434.

Watanabe, J. M., & Harrold, C. (1991). Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Marine Ecology Progress Series, 71, 125-141.

Wellington, G. M. (1984). Marine environment and protection. In R. Perry (Ed.), Key Environments: Galapagos (pp. 247-263). Oxford: Pergamon Press.

Wellington, G. M. (1975). The Galápagos coastal marine environments. A resource report to the Department of National Parks and Wildlife. Quito, Ecuador: Department of National Parks and Wildlife.

Wolff, M., Ruiz, D., & Taylor, M. (2012). El Nino induced changes to the Bolivar Channel ecosystem (Galapagos): comparing model simulations with historical biomass time-series. Marine Ecology Progress Series, 448, 7-22.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Revista de Biología Tropical

Downloads

Download data is not yet available.