Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes
PDF (Español (España))
HTML

Keywords

Mayflies
daily emergence
air and water temperature
tropical stream
Venezuela.
Efímeras
emergencia diaria
temperatura del agua y del aire
río tropical
Venezuela.

How to Cite

Chacón, M. M., Segnini, S., & Briceño, D. (2016). Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes. Revista De Biología Tropical, 64(1), 117–130. https://doi.org/10.15517/rbt.v64i1.17919

Abstract

Daily emergence of mayflies in Neotropical rivers and their causes have been poorly studied. In temperate zones, this process is better known and attributed to several factors. In this work, we studied the daily emergence of subimagines of several Ephemeroptera genera in La Picón River of a Venezuelan Andean cloud forest and its relation with changes of environmental temperature. Four emergence traps were placed along a reach of 50 m of the stream, each one was examined each two hours in a 24 hr cycle to capture the newly emerged subimagos. This procedure was repeated for eight dates between November-2007 and February-2008 for a total of 32 observations in each sampling hour. The subimagos were reared to adults and identified to genus. The relative density of emergence per trap was calculated for each genus and sampling hour. Water and air temperature were measured each hour during the daily cycle of observation, and the averages of temperature and hour-degrees of air and water were calculated for each hour from the eight dates studied. Seven genera were identified: Leptohyphes Eaton, 1882 and Haplohyphes Allen 1966 (Leptophlebiidae); Prebaetodes Lugo-Ortiz and McCafferty, 1996, Andesiops Lugo-Ortiz and McCafferty, 1999, Baetodes Needham and Murphy, 1924 and Americabaetis Kluge, 1992 (Baetidae); and Thraulodes Ulmer, 1920 (Leptophlebiidae); being the more abundant Leptohyphes (38.4 %) and Thraulodes (20.5 %). The emergence occurred between 11:00 am and 23:00 pm showing the following: a) an emergence initiated during daylight hours by organisms of Leptohyphes, Prebaetodes and Haplohyphes; b) a nocturnal emergence, in Thraulodes, Andesiops, Baetodes and Americabaetis; and c) two peaks: one diurnal produced by Leptohyphes and other nocturnal with predominance of Thraulodes. These results are the first records on the diurnal daily emergence in Andesiops, Prebaetodes, Americabaetis, Haplohyphes, and Leptohyphes, as well as the nocturnal emergence in Thraulodes. It was evidenced that Leptohyphes, with small nymphs (average head width = 1.05 mm) needed to accumulate less hour-degrees to initiate the emergence than those required by Thraulodes whose nymphs are larger (average head width = 2.01 mm). This disparity in the emergence energy requirements must be consequence of differences between the sizes of mature nymphs of both genera; facts which rely on the constancy of sizes shown by these taxa along an altitudinal-thermal gradient and the little daily and seasonal variability of water temperature in La Picón River. In the daily lapse when the emergence occurred, the air and water average temperatures were higher than those registered in the no-emergence lapse; therefore; it is suggested that during the daily lapse, when this process occurs, the environment is thermally favorable for the emergence of subimagos and their survival out of water.

 

https://doi.org/10.15517/rbt.v64i1.17919
PDF (Español (España))
HTML

References

Anderson, N. H., & Wallace, J. B. (1996). Habitat, Life History, and Behavioral Adaptations of Aquatic Insects. En R. W. Merrit, & K.W. Cummins (Eds.), Aquatic Insects of North America (pp. 41-73, third edition). Iowa: Kendall-Hunt Publishing Co.

Angilletta, M. J. Jr., Steury, T. D., & Sears, M. W. (2004). Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle. Integrative and Comparative Biology, 44, 498-509.

Aranguren, A., Andressen, R. & Henao, A. (2012). El clima estacional del cinturón montano en el estado Mérida-Venezuela. Revista Geográfica Venezolana, 53(2), 187-212.

Berrigan, D., & Charnov, E. L. (1994). Reaction Norms for Age and Size at Maturity in Response to Temperature: A Puzzle for Life Historians. Oikos, 70(3), 474-478.

Brittain, J. E. (1979). Emergence of Ephemeroptera from Øvre Heimdalsvatn, a Norwegian subalpine lake. En K. Pastternak, & R. Sowa. (Eds.), Proceddings of Second International Conference on Ephemeroptera (pp. 115-123). Warszawa-Kraków: Panstwowe Wydawnictwo Naukowe.

Brittain, J. E. (1982). Biology of Mayflies. Annual Review of Entomology, 27, 119-147.

Chacón, M. M. (2003). Comunidades de Ephemeroptera (Insecta) en la cuenca del Río Chama y su relación con la variabilidad ambiental (Tesis doctoral). Universidad de Los Andes, Mérida-Venezuela.

Chadwick, M. A., & Feminella, J. W. (2001). Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnology and Oceanography, 46(3), 532-542.

Chown, S. L., & Nicolson, S. W. (2004). Insect Physiological Ecology: Mechanisms and Patterns. New York: Oxford University Press Inc.

Damos, P., & Savopoulou-Soultani, M. (2012). Temperature-Driven Models for Insect Development and Vital Thermal Requirements. En M. Savopoulou-Soultani, N. T. Papadopoulos, P. Milonas, & P. Moyal (Eds.), Abiotic Factors and Insect Abundance. Psyche, Vol. 2012, Article ID 123405. 13p. doi: 10.1155/2012/123405

Domínguez, E., Molineri, C., Pescador, M. L., Hubbard, M. D., & Nieto, C. (2006). Ephemeroptera of South America. En J. Adis, J. R. Arias, G. Rueda-Delgado & K. M. Wantzen (Eds.), Aquatic Biodiversity in Latin America (ABLA), Vol. 2. Sofía-Moscow: Pensoft.

Edmunds, Jr. G. F., & Edmunds, C. H. (1980). Predation, climate, and emergence and mating of mayflies. En J. F. Flannagan, & K. E. Marshall (Eds.), Advances in Ephemeroptera Biology (pp. 277-285). New York and London, USA: Plenum Press.

Edmunds, G., & McCafferty, W. P. (1988). The Mayfly Subimago. Annual Review of Entomology, 33, 509-29.

Flannagan, J. F. (1977). Emergence of caddisflies from the Roseau River, Manitoba. En M. Ian Crichton (Ed.), Proceedings 2nd International Symposium on Trichoptera (pp. 183-197). The Hague: Springer.

Gough, F., & Haase, B. L. (1998). Diel emergence patterns of Tricorythodes stygiatus (Ephemeroptera: Leptohyphidae) on the Little Leghigh Creek near Allenntown, Pennsylvania. Entomological News, 109(2), 129-135.

Gregory, J. S., Beesley, S. S., & Van Kirk, R. W. (2000). Effect of springtime water temperature on the time of emergence and size of Pteronarcys californica in the Henry’s Fork catchment, Idaho, U.S.A. Freshwater Biology, 45, 75-83.

Gunn, D. L. (1942). Body temperature in poikilothermal animals. Biological Reviews, 17(4), 293-314.

Harper, M. P., & Peckarsky, B. L. (2006). Emergence cues of a mayfly in a high altitude stream ecosystem: Implications for consequences of climate change. Ecological Applications, 16, 612-621.

Hartley, S., & Lester, P. J. (2003). Temperature-dependent development of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae): a degree-day model with implications for range limits in New Zealand. New Zealand Entomologist, 26, 91-100.

Higley, L. G., Pedigo, L. P., & Ostlie, K. R. (1986). Degday: A Program for Calculating Degree-days., and Assumptions behind the Degree-day Approach. Environmental Entomology, 15, 999-1016.

Ivković, M., Miliša, M., Previšić, A., Popijač, A., & Mihaljević, Z. (2013). Environmental control of emergence patterns: Case study of changes in hourly and daily emergence of aquatic insects at constant and variable water temperatures. International Review of Hydrobiology, 98, 104-115.

Jackson, J. K. (1988). Diel emergence, swarming, and longevity of selected adult aquatic insects of a Sonoran Desert stream. American Midland Naturalist, 119, 344-352.

Jacobsen, D. (2008). Tropical High-Altitude Streams. En D. Dudgeon (Ed.), Tropical Stream Ecology (pp. 219-256, first edition). Amsterdam: Elsevier Inc.

Li, J. L., Johnson, S. L., & Sobota, J. B. (2011). Three responses to small changes in stream temperature by autumn-emerging aquatic insects. Journal of the North American Benthological Society, 30(2), 474-484.

Morgan, N. C., & Waddell, A. B. (1961). Diurnal variation in the emergence of some aquatic insects. Transactions of the Royal Entomological Society of London, 113(6), 123-137.

Pérez, B., & Segnini, S. (2010). Seasonal variation of mayflies (Insecta: Ephemeroptera) in tropical Andean headwater stream. Ecotrópicos, 23(1), 37-49.

Perng, J. J., Lee, Y. S., & Wang, J. P. (2005). Emergence patterns of the mayfly Cloeon marginale (Ephemeroprera: Baetidae) in a tropical monsoon forest wetland in Taiwan. Aquatic Insects, 27(1), 1-9.

Pinder, A. M., Trayler, K. M., Mercer, J. W., Arena, J., & Davis, J. A. (1993). Diel periodicities of adult emergence of some chironomids (Diptera: Chironomidae) and a mayfly (Ephemeroptera: Caenidae) at a Western Australian Wetland. Journal of the Australian Entomological Society, 32, 129-135.

Saska, P., Vlach, M., Schmidtová, J., & Matalin, A. V. (2014). Thermal constants of egg development in carabid beetles - variation resulting from using different estimation methods and among geographically distant European populations. European Journal of. Entomology, 111(5), 000-000. doi: 10.14411/eje.2014.077

Segnini, S., & Chacón, M. M. (2005). Caracterización fisicoquímica del hábitat interno y ribereño de ríos andinos en la Cordillera de Mérida, Venezuela. Ecotropicos, 18(1), 38-61.

Siegel, S., & Castellan, N. J. (1995). Estadística No Paramétrica: aplicada a las ciencias de la conducta. 4a Edición. México: Editorial Trillas.

Smock, L. A. (1996). Macroinvertebrate movements: drift, colonization, and emergence. En R. Hauer, & G. A. Lamberti (Eds.), Methods in Stream Ecology (pp. 371-390). San Diego: Academic Press.

Statzner, B., & Resh, V. H. (1993). Multiple-Site and -Year Analyses of Stream Insect Emergence: A Test of Ecological Theory. Oecologia, 96(1), 65-79.

Sweeney, B. W. (1984). Factors influencing Life-History patterns of aquatic insects. En V. H. Resh, & D. M. Rosenberg (Eds.), The Ecology of Aquatic Insects (Chapter 4, pp. 57-100). New York: Praeger Publishers.

Sweeney, B. W., & Vannote, R. L. (1981). Ephemerella mayflies of White Clay Creek: Bioenergetic and ecological relationships among six coexisting species. Ecology, 62, 1353-1369.

Ward, J. V., & Stanford, J. A. (1982). Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology, 27, 97-117.

Watanabe, N. C., Hata, K., Hisaeda, K., Hoshi, K., & Ishiwata, S. (1998). Seasonal of diurnal timing of emergence of Ephoron shigae (Ephemeroptera: Polymitarcyidae) from four Japanese Rivers. The Japanese Journal of Limnology, 59(2), 199-206.

Wesner, J. S. (2012). Emerging aquatic insects as predators in terrestrial systems across a gradient of stream temperature in North and South America. Freshwater Biology, 57 (12), 2465-2474.

Wiersema, N. A., & McCafferty, W. P. (2000): Generic Revision of the North and Central American Leptohyphidae (Ephemeroptera: Pannota). Transactions of the American Entomological Society, 126 (3-4), 337-372.

Wright, L. L., & Matice, J. S. (1985). Emergence Patterns of Hexagenia bilineata: Integration of Laboratory and Field Data. Freshwater Invertebrate Biology, 4(3): 109-124.

Young, L. J., & Young, J. H. (1998). Statistical ecology: A population perspective. First Edition. New York: Springer Science-Business Media.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2016 Revista de Biología Tropical

Downloads

Download data is not yet available.