Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Invertebrate colonization on artificial substrates in a coral reef at Gorgona Island, Colombian Pacific Ocean
PDF
HTML

Keywords

Balanus trigonus
barnacles
coral reefs
Gorgona Island
invertebrates
colonization
spatial variation
Trigonus Balanus
percebes
arrecifes de coral
Isla Gorgona
invertebrados
colonización
variación espacial

How to Cite

Lozano-Cortés, D. F., & Zapata, F. A. (2014). Invertebrate colonization on artificial substrates in a coral reef at Gorgona Island, Colombian Pacific Ocean. Revista De Biología Tropical, 62(S1), 161–168. https://doi.org/10.15517/rbt.v62i0.16273

Abstract

Habitat colonization is a fundamental process in marine population dinamics and community ecology. Marine invertebrate colonization of artificial hard substrates and its spatial variation was studied over the course of one year at La Azufrada coral reef, Gorgona Island, Colombia. Five sets of artificial plates (terracotta and ceramic) were deployed parallel to the bottom in each of three reef zones (backreef, flat and slope). Plates were recovered after 12 months of their installation. The community that developed on the artificial substrate plates was composed of 24 taxa, among which corals were remarkably absent. Species richness on plates did not differ between reef zones, type of plate material or plate surfaces. The resulting community was dominated by barnacles (Balanus trigonus) with a mean density of 26 787.8 (±47 301.0) individuals/m2 (mean±1S.D.). The density of this species was significantly higher on plates deployed on the reef slope than on the reef flat or back reef, and was lower on the upper than on the lower or lateral surfaces of plates. The dominance of B. trigonus on artificial plates during this experiment suggests a possible synergistic effect between its reproductive traits and competitive ability for space, which prevents the successful recruitment of other reef organisms such as corals. Rev. Biol. Trop. 62 (Suppl. 1): 161-168. Epub 2014 February 01.
https://doi.org/10.15517/rbt.v62i0.16273
PDF
HTML

References

Birkeland, C. (1977). The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proceedings 3rd International Coral Reef Symposium, 1:15-21.

Broitman, B. R., Blanchette, C. A., Menge, B. A., Lubchenco, J., Krenz, C., Foley, M., Raimondi, P. T., Lohse, D. & Gaines, S. D. (2008). Spatial and temporal patterns of invertebrate recruitment along the west coast of the United States. Ecological Monographs, 78: 403-421.

Burt, J., Bartholomew, A., Bauman, A., Saif, A. & Sale P. (2009). Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters. Journal of Experimental Marine Biology and Ecology, 373:72-78.

Caffey, J. M. (1985). Spatial and temporal variation in settlement and recruitment of intertidal barnacles. Ecological Monographs, 55: 313-332.

Chapman, M. G. (2002). Early colonization of shallow subtidal boulders in two habitats. Journal of Experimental Marine Biology and Ecology, 275: 95-116.

Chornesky, E. A. (1989). Repeated reversals during spatial competition between corals. Ecology, 70:843-855

Elías, R. & Vallarino, E. (2001). The introduced barnacle Balanus glandula (Darwin) in the Mar del Plata port as a structuring species in the intertidal community. Investigaciones Marinas, 29: 37-46.

Field, S., D. Glassom, D. & Bythell, J. (2007). Effects of artificial settlement plate materials and methods of deployment on the sessile epibenthic community development in a tropical environment. Coral Reefs, 26: 279-289.

Fitzhardinge, R. C. & Bailey-Brock, J. H. (1989). Colonization of artificial reef materials by corals and other sessile organisms. Bulletin of Marine Science, 44: 567-579.

Gaines, S., Brown S. & Roughgarden, J. (1985). Spatial variation in larval concentrations as a cause of spatial variation in settlement for the barnacle Balanus glandula. Oecología, 67: 267-272.

García C. & Moreno, I. (1998). Recruitment, growth, mortality and orientation patterns of Balanus trigonus (Crustacea: Cirripedia) during succession on fouling plates. Scientia Marina, 62:59-64.

Giraldo, A., Rodríguez-Rubio, E. & Zapata, F. (2008). Condiciones oceanográficas en Isla Gorgona, Pacífico oriental tropical de Colombia. Latin American Journal of Aquatic Research, 36: 121-128.

Glasby, T. M. (1999). Interactive effects of shading and proximity to the seafloor on the development of subtidal epibiotic assemblages. Marine Ecology Progress Series, 190: 113-124.

Glynn, P. W., Von Prahl, H. & Guhl, F. (1982). Coral reefs of Gorgona Island, with special reference to corallivores and their influence on community structure and reef development. Anales del Instituto de Investigaciones Marinas de Punta de Betín, 12: 185-214.

Glynn, P. W., Colley, S. B., Gassman, N. J., Black, K., Cortés, J. & Maté, J. L. (1996). Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and Galápagos Island. III. Agariciidae. Marine Biology, 125: 579-601.

Harrington, L., Fabricius, K., De’ath, G. & Negri, A. (2004). Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology, 85: 3428-3437.

Harriott, V. & Fisk, D. (1987). A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Marine Ecology Progress Series, 37: 201-208.

Jackson, J. (1977). Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. American Naturalist, 111: 743-767.

Jackson, J. & Buss, L. (1975). Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Sciences, 72: 5160-5163.

Keough, M. J. (1998). Responses of settling invertebrate larvae to the presence of established recruits. Journal of Experimental Marine Biology and Ecology, 231: 1-19.

López-Pérez, R., Mora- Pérez, M. & Leyte-Morales, G. (2007). Coral (Anthozoa: Scleractinia) recruitment at Bahías de Huatulco, Western México: Implications for coral community structure and dynamics. Pacific Science, 61: 355-369.

Lozano-Cortés, D. F. & Londoño-Cruz, E. (2013). Checklist of barnacles (Crustacea; Cirripedia: Thoracica) from the Colombian Pacific. Marine Biodiversity, 43(4). doi: 10.1007/ s12526-013-0175-2.

Lozano-Cortés, D. F., Giraldo, A. & Izquierdo, V. (2014). Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia. Revista de Biología Tropical, 62 (Suppl. 1): 107-116.

Maughan, B. (2001). The effects of sedimentation and light on recruitment and development of a temperate, subtidal, epifaunal community. Journal of Experimental Marine Biology and Ecology, 256: 59-71.

Medina-Rosas, P., Carriquiry, J. D. & Cupul-Magaña, A. L. (2005). Reclutamiento de Porites (scleractinia) sobre sustrato artificial en arrecifes afectados por El Niño 1997-98, en Bahía de Banderas, Pacífico mexicano. Ciencias Marinas, 31: 103-109.

Moore, H & McPherson, B. (1963). Colonization of the Miami area by the barnacle Balanus trigonus Darwin and a note on its occurrence on the test of an echinoid. Bulletin of Marine Science, 13: 418-421.

Perkol-Finkel, S. & Y. Benayahu. (2005). Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Marine Environmental Research, 59: 79-99.

Richmond, R. H. (1985). Variations in the population biology of Pocillopora damicornis across the Pacific. Proceedings of the fifth International Coral Reef Congress, 6: 101-106.

Rubin, J. A. (1985). Mortality and avoidance of competitive overgrowth in encrusting bryozoa. Marine Ecology Progress Series, 23: 291-299.

Segal, B., Berenguer1, V. & Castro C. (2012). Experimental recruitment of the Brazilian endemic coral Mussismilia braziliensis and conditioning of settlement plates. Ciencias Marinas, 38:1-10.

Thiyagarajan, V., Harder, T. & Qian, P. (2003). Combined effects of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. Journal of Experimental Marine Biology and Ecology, 287: 223-236.

Wellington, G. M. (1982). Depth zonation of corals in the Gulf of Panama: control and facilitation by resident reef fishes. Ecological Monographs, 52: 224-241.

Werner, W. E. (1967). The distribution and ecology of the barnacle Balanus trigonus. Bulletin of Marine Science, 17: 64-84.

Wethey, D. (1986). Ranking of settlement cues by barnacle larvae: Influence of surface contour. Bulletin of Marine Science, 39: 393-400.

Wilkinson, C. (2004). Status of coral reefs of the world: 2004. Global Coral Reef Monitoring Network. Australian Institute of Marine Science, 557.

Zapata, F. A. (2001). Formaciones coralinas de Isla Gorgona. In L. M. Barrios & M. López-Victoria (Eds.), Gorgona marina: Contribución al conocimiento de una isla única (pp. 27-40). INVEMAR-Serie Publicaciones Especiales No. 7. Santa Marta, Colombia.

Zapata, F. A. & Vargas-Ángel, B. (2003). Corals and coral reefs of the Pacific coast of Colombia. In J. Cortés (Ed.), Latin America coral reefs (pp. 419-447). Elsevier Science B. V., Amsterdam, Netherlands.

Zapata, F. A., Rodríguez-Ramírez, A., Caro-Zambrano, C. & Garzón-Ferreira, J. (2010). Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef. Revista de Biología Tropical, 58 (Suppl. 1): 81-94.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.