Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud ISSN Impreso: 1409-0724 ISSN electrónico: 1659-4436

OAI: https://www.revistas.ucr.ac.cr/index.php/pem/oai
[Original en inglés] Adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática
PDF_EN (English)
XML_EN (English)
EPUB_en (English)

Palabras clave

Musculoskeletal system physiology
adaptation
morphology
lifestyle
physical activity
osteomuscular
adaptación
estilo de vida
actividad física
osteomuscular
adaptação
estilo de vida
atividade física

Cómo citar

León, F., Mestre, A., Priego, L., & Vera, J. C. (2023). [Original en inglés] Adaptaciones morfológicas en respuesta al ejercicio crónico en los tejidos osteomusculares: una revisión sistemática. Pensar En Movimiento: Revista De Ciencias Del Ejercicio Y La Salud, 21(1), e51450. https://doi.org/10.15517/pensarmov.v21i1.51450

Resumen

 Hasta la fecha, no existe una revisión sistemática que resuma las adaptaciones morfológicas del sistema osteomuscular en respuesta al ejercicio crónico. Esta revisión sistemática seleccionó artículos originales, con fecha de publicación de 2000 a 2020, idioma de publicación en inglés, con una clara intervención de ejercicio y que presentaron un cambio morfológico en el tejido estudiado. Participantes humanos independientemente de la edad, el género o condición de salud. Se identificaron 2819 registros. Después de eliminar los duplicados, la selección de títulos y resúmenes y la revisión de texto completo, se incluyeron 67 registros en el análisis final (6 para disco intervertebral, 6 para cartílago, 36 para hueso, 2 para ligamento, 9 para tendón y 7 para músculo). Los resultados destacan que las intervenciones más utilizadas fueron ejercicio aeróbico, contra resistencia y pliométrico. La población abarcó desde niños y personas sanas activas hasta personas con alguna condición de salud. Se concluye que como respuesta al ejercicio crónico existen adaptaciones morfológicas en los tejidos del sistema musculoesquelético, que pueden variar desde un aumento de rigidez hasta un aumento de área.  Aunque los tejidos pueden adaptarse, aún quedan varias preguntas, como la dosis y tipo de ejercicio óptimo, si pueden ocurrir adaptaciones en un tejido lesionado y las implicaciones funcionales de estas adaptaciones. La investigación futura debe abordar estas preguntas.

https://doi.org/10.15517/pensarmov.v21i1.51450
PDF_EN (English)
XML_EN (English)
EPUB_en (English)

Citas

Alghadir, A., Gabr, S., Al-Eisa, E., & Al-Ghadir, M. (2016). Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults. Dovepress, 2016(11), 265-273. https://doi.org/10.2147/CIA.S100566

*Arampatzis, A., Karamanidis, K., & Albracht, K. (2007). Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. Journal of Experimental Biology, 210(Pt 15), 2743–2753. https://doi.org/10.1242/jeb.003814

*Armagan, O., Yilmazer, S., Calısir, C., Ozgen, M., Tascioglu, F., Oner, S., & Akcar, N. (2015). Comparison of the symptomatic and chondroprotective effects of glucosamine sulphate and exercise treatments in patients with knee osteoarthritis. Journal of Back Musculoskelet Rehabilitation, 28(2), 287–293. https://doi.org/10.3233/BMR-140516

*Bailey, C. A., & Brooke-Wavell, K. (2010). Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone, 46(4), 1043–1049. https://doi.org/10.1016/j.bone.2009.12.001

*Bailey, C. A., Kukuljan, S., & Daly, R. M. (2010). Effects of lifetime loading history on cortical bone density and its distribution in middle-aged and older men. Bone, 47(3), 673–680. https://www.sciencedirect.com/science/article/abs/pii/S8756328210013414?via%3Dihub

*Belavy, D. L., Quittner, M. J., Ridgers, N., Ling, Y., Connell, D., & Rantalainen, T. (2017). Running exercise strengthens the intervertebral disc. Scientific Reports, 7, 45975. https://www.nature.com/articles/srep45975

*Belavy, D. L., Quittner, M., Ridgers, N. D., Ling, Y., Connell, D., Trudel, G., & Rantalainen, T. (2019). Beneficial Intervertebral Disc and Muscle Adaptations in High-Volume Road Cyclists. Medicine & Science in Sports Exercise, 51(1), 211–217. https://doi.org/10.1249/MSS.0000000000001770

*Benli Küçük, E., Özyemişci Taşkıran, O., Tokgöz, N., & Meray, J. (2017). Effects of isokinetic, isometric, and aerobic exercises on clinical variables and knee cartilage volume using magnetic resonance imaging in patients with osteoarthritis. Turkish Journal of Physical Medicine and Rehabilitation, 64(1), 8–16. https://doi.org/10.5606/tftrd.2018.795

*Bickel, C. S., Cross, J. M., & Bamman, M. M. (2011). Exercise dosing to retain resistance training adaptations in young and older adults. Medicine & Science in Sports & Exercise, 43(7), 1177–1187. https://doi.org/10.1249/MSS.0b013e318207c15d

Bini, R. R., & Bini, A. F. (2020). Effects of exercise mode in knee cartilage thickness. Journal of Bodywork and Movement Therapies, 24(4), 490–495. https://doi.org/10.1016/j.jbmt.2020.05.006

*Bohm, S., Mersmann, F., Tettke, M., Kraft, M., & Arampatzis, A. (2014). Human achilles tendon plasticity in response to cyclic strain: Effect of rate and duration. Journal of Experimental Biology, 217(22), 4010–4017. https://doi.org/10.1242/jeb.112268

*Bolton, K. L., Egerton, T., Wark, J., Wee, E., Matthews, B., Kelly, A., Craven, R., Kantor, S., & Bennell, K. L. (2012). Effects of exercise on bone density and falls risk factors in post-menopausal women with osteopenia: A randomised controlled trial. Journal of Sciences and Medicine in Sport, 15(2), 102–109. https://doi.org/10.1016/j.jsams.2011.08.007

*Bowden, J. A., Bowden, A. E., Wang, H., Hager, R. L., LeCheminant, J. D., & Mitchell, U. H. (2018). In vivo correlates between daily physical activity and intervertebral disc health. Journal of Orthopaedic Research, 36(5), 1313–1323. https://doi.org/10.1002/jor.23765

Breda, S. J., Vos, R.-J. de, Krestin, G. P., & Oei, E. H. G. (2022). Decreasing patellar tendon stiffness during exercise therapy for patellar tendinopathy is associated with better outcome. Journal of Science and Medicine in Sport, 25(5), 372–378. https://doi.org/10.1016/j.jsams.2022.01.002

Claes, S., Verdonk, P., Forsyth, R., & Bellemans, J. (2011). The “ligamentization” process in anterior cruciate ligament reconstruction: What happens to the human graft? A systematic review of the literature. The American Journal of Sports Medicine, 39(11), 2476–2483. https://doi.org/10.1177/0363546511402662

Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports Medicine, 37(9), 737–763. https://link.springer.com/article/10.2165/00007256-200737090-00001

Coffey, V. G., Pilegaard, H., Garnham, A. P., O’Brien, B. J., & Hawley, J. A. (2009). Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. Journal of Applied Physiology, 106(4), 1187–1197. https://doi.org/10.1152/japplphysiol.91221.2008

*Cotofana, S., Ring-Dimitriou, S., Hudelmaier, M., Himmer, M., Wirth, W., Sänger, A. M., & Eckstein, F. (2010). Effects of exercise intervention on knee morphology in middle-aged women: A longitudinal analysis using magnetic resonance imaging. Cells Tissues Organs, 192(1), 64–72. https://doi.org/10.1159/000289816

Cristi-Sánchez, I., Danes-Daetz, C., Neira, A., Ferrada, W., Yáñez Díaz, R., & Silvestre Aguirre, R. (2019). Patellar and Achilles Tendon Stiffness in Elite Soccer Players Assessed Using Myotonometric Measurements. Sports Health, 11(2), 157–162. https://doi.org/10.1177/1941738118820517

Crowder, H. A., Mazzoli, V., Black, M. S., Watkins, L. E., Kogan, F., Hargreaves, B. A., Levenston, M. E., & Gold, G. E. (2021). Characterizing the transient response of knee cartilage to running: Decreases in cartilage T(2) of female recreational runners. J Orthop Res, 39(11), 2340–2352. https://doi.org/10.1002/jor.24994

*Detter, F. T. L., Rosengren, B. E., Dencker, M., Nilsson, J.-Å., & Karlsson, M. K. (2013). A 5-Year Exercise Program in Pre- and Peripubertal Children Improves Bone Mass and Bone Size Without Affecting Fracture Risk. Calcified Tissue International, 92(4), 385–393. https://link.springer.com/article/10.1007/s00223-012-9691-5

Downes, M. J., Brennan, M. L., Williams, H. C., & Dean, R. S. (2016). Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open, 6(12), e011458. http://dx.doi.org/10.1136/bmjopen-2016-011458

*Dowthwaite, J. N., Flowers, P. P. E., Spadaro, J. A., & Scerpella, T. A. (2007). Bone Geometry, Density, and Strength Indices of the Distal Radius Reflect Loading via Childhood Gymnastic Activity. Journal of Clinical Densitometry, 10(1), 65–75. https://doi.org/10.1016/j.jocd.2006.10.003

*Draghici, A. E., Taylor, J. A., Bouxsein, M. L., & Shefelbine, S. J. (2019). Effects of FES‐Rowing Exercise on the Time‐Dependent Changes in Bone Microarchitecture After Spinal Cord Injury: A Cross‐Sectional Investigation. JBMR Plus, 3(9), e10200. https://doi.org/10.1002/jbm4.10200

*Du, J., Hartley, C., Brooke-Wavell, K., Paggiosi, M. A., Walsh, J. S., Li, S., & Silberschmidt, V. V. (2021). High-impact exercise stimulated localised adaptation of microarchitecture across distal tibia in postmenopausal women. Osteoporosis International, 32(5), 907–919. https://link.springer.com/article/10.1007/s00198-020-05714-4

*Ducher, G., Bass, S. L., Saxon, L., & Daly, R. M. (2011). Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: A 12-month study in pre/peri- and postmenarcheal tennis players. Journal of Bone and Mineral Research, 26(6), 1321–1329. https://doi.org/10.1002/jbmr.323

*Ducher, G., Daly, R. M., & Bass, S. L. (2009). Effects of Repetitive Loading on Bone Mass and Geometry in Young Male Tennis Players: A Quantitative Study Using MRI. Journal of Bone and Mineral Research, 24(10), 1686–1692. https://doi.org/10.1359/jbmr.090415

*Ducher, G., Prouteau, S., Courteix, D., & Benhamou, C. L. (2004). Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing. Journal of Clinical Densitometry, 7(4), 399–405. https://doi.org/10.1385/JCD:7:4:399

Dunn, S. L., & Olmedo, M. L. (2016). Mechanotransduction: Relevance to Physical Therapist Practice-Understanding Our Ability to Affect Genetic Expression Through Mechanical Forces. Physical Therapy, 96(5), 712–721. https://doi.org/10.2522/ptj.20150073

*Epro, G., Hunter, S., König, M., Schade, F., & Karamanidis, K. (2019). Evidence of a Uniform Muscle-Tendon Unit Adaptation in Healthy Elite Track and Field Jumpers: A Cross Sectional Investigation. Frontiers in Physiology, 10, 574. https://doi.org/10.3389/fphys.2019.00574

*Epro, G., Mierau, A., Doerner, J., Luetkens, J. A., Scheef, L., Kukuk, G. M., Boecker, H., Maganaris, C. N., Brüggemann, G.-P., & Karamanidis, K. (2017). The Achilles tendon is mechanosensitive in older adults: Adaptations following 14 weeks versus 1.5 years of cyclic strain exercise. Journal of Experimental Biology, 220(6), 1008–1018. https://doi.org/10.1242/jeb.146407

Esculier, J. F., Jarrett, M., Krowchuk, N. M., Rauscher, A., Wiggermann, V., Taunton, J. E., Wilson, D. R., Gatti, A. A., & Hunt, M. A. (2019). Cartilage recovery in runners with and without knee osteoarthritis: A pilot study. The Knee Journal, 26(5), 1049–1057. https://doi.org/10.1016/j.knee.2019.07.011

Fearing, B. V., Hernandez, P. A., Setton, L. A., & Chahine, N. O. (2018). Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine, 1(3). https://doi.org/10.1002/jsp2.1026

*Fernandez-Gonzalo, R., Lundberg, T. R., Alvarez-Alvarez, L., & De Paz, J. A. (2014). Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. European Journal of Applied Physiology, 114(5), 1075–1084. https://link.springer.com/article/10.1007/s00421-014-2836-7

*Franchi, M. V., Atherton, P. J., Reeves, N. D., Flück, M., Williams, J., Mitchell, W. K., Selby, A., Beltran Valls, R. M., & Narici, M. V. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiologica, 210(3), 642–654. https://doi.org/10.1111/apha.12225

Franchi, M. V., Reeves, N. D., & Narici, M. V. (2017). Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Frontiers in Physiology, 8(447). https://doi.org/10.3389/fphys.2017.00447

*Franchi, M. V., Wilkinson, D. J., Quinlan, J. I., Mitchell, W. K., Lund, J. N., Williams, J. P., Reeves, N. D., Smith, K., Atherton, P. J., & Narici, M. V. (2015). Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle. Physiological Reports, 3(11), e12593. https://doi.org/10.14814/phy2.12593

Frank, C. B. (2004). Ligament structure, physiology and function. Journal of Musculoskeletal & Neuronal Interactions, 4(2), 199–201. https://www.ismni.org/jmni/pdf/16/21FRANK.pdf

*Gabr, S., Al-Ghadir, M., H. Alghadir, A., & S. Al-Eisa, E. (2016). Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults. Clinical Interventions in Aging, 2016(11), 265-273. https://doi.org/10.2147/CIA.S100566

Gilbert, S. J., & Blain, E. J. (2018). Cartilage mechanobiology: How chondrocytes respond to mechanical load. In S. Verbruggen (Ed.), Mechanobiology in Health and Disease (pp. 99–126). Academic Press. https://orca.cardiff.ac.uk/id/eprint/114560/

*Greene, D. A., Wiebe, P. N., & Naughton, G. A. (2009). Influence of Drop-Landing Exercises on Bone Geometry and Biomechanical Properties in Prepubertal Girls: A Randomized Controlled Study. Calcified Tissue International, 85(2), 94–103. https://link.springer.com/article/10.1007/s00223-009-9253-7

*Grzelak, P., Podgorski, M., Stefanczyk, L., Krochmalski, M., & Domzalski, M. (2012). Hypertrophied cruciate ligament in high performance weightlifters observed in magnetic resonance imaging. International Orthopaedics, 36(8), 1715–1719. https://link.springer.com/article/10.1007/s00264-012-1528-3

Gusmão, C. V. B. de, & Belangero, W. D. (2015). HOW DO BONE CELLS SENSE MECHANICAL LOADING? Revista Brasileira de Ortopedia, 44(4), 299–305. https://doi.org/10.1016%2FS2255-4971(15)30157-9

*Häkkinen, K., Pakarinen, A., Hannonen, P., Häkkinen, A., Airaksinen, O., Valkeinen, H., & Alen, M. (2002). Effects of strength training on muscle strength, cross-sectional area, maximal electromyographic activity, and serum hormones in premenopausal women with fibromyalgia. The Journal of Rheumatology, 29(6), 1287–1295. https://www.jrheum.org/content/29/6/1287.long

*Harding, A. T., Weeks, B. K., Lambert, C., Watson, S. L., Weis, L. J., & Beck, B. R. (2020). Effects of supervised high-intensity resistance and impact training or machine-based isometric training on regional bone geometry and strength in middle-aged and older men with low bone mass: The LIFTMOR-M semi-randomised controlled trial. Bone, 136, 115362. https://doi.org/10.1016/j.bone.2020.115362

Harkey, M. S., Blackburn, J. T., Hackney, A. C., Lewek, M. D., Schmitz, R. J., Nissman, D., & Pietrosimone, B. (2018). Comprehensively Assessing the Acute Femoral Cartilage Response and Recovery after Walking and Drop-Landing: An Ultrasonographic Study. Ultrasound Med Biol, 44(2), 311–320. https://doi.org/10.1016/j.ultrasmedbio.2017.10.009

*Hasselstrøm, H. A., Karlsson, M. K., Hansen, S. E., Grønfeldt, V., Froberg, K., & Andersen, L. B. (2008). A 3-Year Physical Activity Intervention Program Increases the Gain in Bone Mineral and Bone Width in Prepubertal Girls but not Boys: The Prospective Copenhagen School Child Interventions Study (CoSCIS). Calcified Tissue International, 83(4), 243–250. https://link.springer.com/article/10.1007/s00223-008-9166-x

*Heinonen, A., Sievänen, H., Kannus, P., Oja, P., & Vuori, I. (2002). Site-Specific Skeletal Response to Long-Term Weight Training Seems to be Attributable to Principal Loading Modality: A pQCT Study of Female Weightlifters. Calcified Tissue International, 70(6), 469–474. https://link.springer.com/article/10.1007/s00223-001-1019-9

*Hinterwimmer, S., Feucht, M. J., Steinbrech, C., Graichen, H., & von Eisenhart-Rothe, R. (2014). The effect of a six-month training program followed by a marathon run on knee joint cartilage volume and thickness in marathon beginners. Knee Surgery Sports Traumatology Arthroscopy, 22(6), 1353–1359. https://link.springer.com/article/10.1007/s00167-013-2686-6

*Holm, L., Reitelseder, S., Pedersen, T. G., Doessing, S., Petersen, S. G., Flyvbjerg, A., Andersen, J. L., Aagaard, P., & Kjaer, M. (2008). Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. Journal of Applied Physiology, 105(5), 1454–1461. https://doi.org/10.1152/japplphysiol.90538.2008

Hughes, D. C., Ellefsen, S., & Baar, K. (2018). Adaptations to Endurance and Strength Training. Cold Spring Harbor Perspectives in Medicine, 8(6), a029769. http://doi.org/10.1101/cshperspect.a029769

*Hughes, J. M., Gaffney-Stomberg, E., Guerriere, K. I., Taylor, K. M., Popp, K. L., Xu, C., Unnikrishnan, G., Staab, J. S., Matheny, R. W., Jr., McClung, J. P., Reifman, J., & Bouxsein, M. L. (2018). Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training. Bone, 113, 9–16. https://www.sciencedirect.com/science/article/abs/pii/S8756328218301753?via%3Dihub

Iatridis, J. C., MacLean, J. J., Roughley, P. J., & Alini, M. (2006). Effects of mechanical loading on intervertebral disc metabolism in vivo. The Journal of Bone& Joint Surgery, 88 (Suppl. 2), 41–46. https:/doi.org/10.2106/JBJS.E.01407

Jani, K., & Schöck, F. (2009). Molecular mechanisms of mechanosensing in muscle development. Dev Dyn, 238(6), 1526–1534 https://doi.org/10.1002/dvdy.21972

*Karamanidis, K., & Epro, G. (2020). Monitoring Muscle-Tendon Adaptation Over Several Years of Athletic Training and Competition in Elite Track and Field Jumpers. Frontiers in Physiology, 11, 607544. https://www.frontiersin.org/articles/10.3389/fphys.2020.607544/full

*Karinkanta, S., Heinonen, A., Sievänen, H., Uusi-Rasi, K., Pasanen, M., Ojala, K., Fogelholm, M., & Kannus, P. (2007). A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: Randomized, controlled trial. Osteoporosis International, 18(4), 453–462. https://link.springer.com/article/10.1007/s00198-006-0256-1

Kersting, U. G., Stubendorff, J. J., Schmidt, M. C., & Brüggemann, G. P. (2005). Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthritis Cartilage, 13(10), 925–934. https://doi.org/10.1016/j.joca.2005.06.005

*Khanzadeh, R., Mahdavinejad, R., & Borhani, A. (2020). The Effect of Suspension and Conventional Core Stability Exercises on Characteristics of Intervertebral Disc and Chronic Pain in Office Staff Due to Lumbar Herniated Disc. The Archives of Bone and Joint Surgery, 8(3), 445–453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7358225/

*Koli, J., Multanen, J., Kujala, U. M., Häkkinen, A., Nieminen, M. T., Kautiainen, H., Lammentausta, E., Jämsä, T., Ahola, R., Selänne, H., Kiviranta, I., & Heinonen, A. (2015). Effects of Exercise on Patellar Cartilage in Women with Mild Knee Osteoarthritis. Medicine & Science in Sports & Exercise, 47(9), 1767–1774. https://doi.org/10.1249/MSS.0000000000000629

Küçük, E.B., Taşkıran, Ö. Ö., Tokgöz, N., & Meray, J. (2018). Effects of isokinetic, isometric, and aerobic exercises on clinical variables and knee cartilage volume using magnetic resonance imaging in patients with osteoarthritis. Turkish Journal of Physical Medicine and Rehabilitation, 64(1), 8-16. https://doi.org/10.5606/tftrd.2018.795

*Kukuljan, S., Nowson, C. A., Sanders, K. M., Nicholson, G. C., Seibel, M. J., Salmon, J., & Daly, R. M. (2011). Independent and Combined Effects of Calcium-Vitamin D3 and Exercise on Bone Structure and Strength in Older Men: An 18-Month Factorial Design Randomized Controlled Trial. The Journal of Clinical Endocrinology & Metabolism, 96(4), 955–963. https://doi.org/10.1210/jc.2010-2284

*Lambert, C., Beck, B. R., Harding, A. T., Watson, S. L., & Weeks, B. K. (2020). Regional changes in indices of bone strength of upper and lower limbs in response to high-intensity impact loading or high-intensity resistance training. Bone, 132, 115192. https://doi.org/10.1016/j.bone.2019.115192

*Lang, T. F., Saeed, I. H., Streeper, T., Carballido-Gamio, J., Harnish, R. J., Frassetto, L. A., Lee, S. M., Sibonga, J. D., Keyak, J. H., Spiering, B. A., Grodsinsky, C. M., Bloomberg, J. J., & Cavanagh, P. R. (2014). Spatial Heterogeneity in the Response of the Proximal Femur to Two Lower-Body Resistance Exercise Regimens. Journal of Bone and Mineral Research, 29(6), 1337–1345. https://doi.org/10.1002%2Fjbmr.2155

Lavagnino, M., Wall, M. E., Little, D., Banes, A. J., Guilak, F., & Arnoczky, S. P. (2015). Tendon mechanobiology: Current knowledge and future research opportunities. Journal of Orthopaedic Research, 33(6), 813–822. https://doi.org/10.1002/jor.22871

León, F., Mestre. A., Priego, L., & Vera, J.C. (2023). Full study of Morphological adaptations in response to chronic exercise across musculoskeletal tissues: a systematic review. Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud, 21(1), 1-21. https://doi.org/10.15517/pensarmov.v21i1.55427

Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Physical Therapy, 83(8), 713–721. https://doi.org/10.1093/ptj/83.8.713

*Marques, E. A., Mota, J., Machado, L., Sousa, F., Coelho, M., Moreira, P., & Carvalho, J. (2011). Multicomponent Training Program with Weight-Bearing Exercises Elicits Favorable Bone Density, Muscle Strength, and Balance Adaptations in Older Women. Calcified Tissue International, 88(2), 117–129. https://link.springer.com/article/10.1007/s00223-010-9437-1

*Marques, E. A., Mota, J., Viana, J. L., Tuna, D., Figueiredo, P., Guimarães, J. T., & Carvalho, J. (2013). Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Archives of Gerontology and Geriatrics, 57(2), 226–233. https://doi.org/10.1016/j.archger.2013.03.014

*Marzilger, R., Bohm, S., Mersmann, F., & Arampatzis, A. (2020). Modulation of physiological cross-sectional area and fascicle length of vastus lateralis muscle in response to eccentric exercise. Journal of Biomechanics, 111, 110016. https://doi.org/10.1016/j.jbiomech.2020.110016

*Milgrom, Y., Milgrom, C., Altaras, T., Globus, O., Zeltzer, E., & Finestone, A. S. (2014). Achilles tendons hypertrophy in response to high loading training. Foot Ankle International, 35(12), 1303–1308. https://doi.org/10.1177/1071100714550651

*Milliken, L. A., Going, S. B., Houtkooper, L. B., Flint-Wagner, H. G., Figueroa, A., Metcalfe, L. L., Blew, R. M., Sharp, S. C., & Lohman, T. G. (2003). Effects of exercise training on bone remodeling, insulin-like growth factors, and bone mineral density in postmenopausal women with and without hormone replacement therapy. Calcified Tissue International, 72(4), 478–484. https://link.springer.com/article/10.1007/s00223-001-1128-5

Moghetti, P., Bacchi, E., Brangani, C., Donà, S., & Negri, C. (2016). Metabolic Effects of Exercise. Frontiers of Hormone Research, 47, 44–57. https://doi.org/10.1159/000445156

*Morse, L. R., Troy, K. L., Fang, Y., Nguyen, N., Battaglino, R., Goldstein, R. F., Gupta, R., & Taylor, J. A. (2019). Combination Therapy With Zoledronic Acid and FES-Row Training Mitigates Bone Loss in Paralyzed Legs: Results of a Randomized Comparative Clinical Trial. JBMR Plus, 3(5), e10167. https://doi.org/10.1002/jbm4.10167

*Munukka, M., Waller, B., Rantalainen, T., Häkkinen, A., Nieminen, M. T., Lammentausta, E., Kujala, U. M., Paloneva, J., Sipilä, S., Peuna, A., Kautiainen, H., Selänne, H., Kiviranta, I., & Heinonen, A. (2016). Efficacy of progressive aquatic resistance training for tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis: A randomised controlled trial. Osteoarthritis and Cartilage, 24(10), 1708–1717. https://doi.org/10.1016/j.joca.2016.05.007

*Myrick, K. M., Voss, A., Feinn, R. S., Martin, T., Mele, B. M., & Garbalosa, J. C. (2019). Effects of season long participation on ACL volume in female intercollegiate soccer athletes. Journal of Experimental Orthopaedics, 6(1). https://jeo-esska.springeropen.com/articles/10.1186/s40634-019-0182-8

*Nilsson, M., Ohlsson, C., Mellström, D., & Lorentzon, M. (2013). Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men. Osteoporosis International, 24(5), 1613–1622. https://doi.org/10.1007%2Fs00198-012-2142-3

*O’Leary, T. J., Izard, R. M., Walsh, N. P., Tang, J. C. Y., Fraser, W. D., & Greeves, J. P. (2019). Skeletal macro- and microstructure adaptations in men undergoing arduous military training. Bone, 125, 54–60. https://www.sciencedirect.com/science/article/abs/pii/S8756328219301735?via%3Dihub

*Owen, P. J., Hangai, M., Kaneoka, K., Rantalainen, T., & Belavy, D. L. (2021). Mechanical loading influences the lumbar intervertebral disc. A cross-sectional study in 308 athletes and 71 controls. Journal of Orthopaedic Research, 39(5), 989–997. https://doi.org/10.1002/jor.24809

*Owen, P. J., Miller, C. T., Rantalainen, T., Simson, K. J., Connell, D., Hahne, A. J., Trudel, G., Ford, J. J., & Belavy, D. L. (2020). Exercise for the intervertebral disc: A 6-month randomised controlled trial in chronic low back pain. European Spine Journal, 29(8), 1887–1899. https://link.springer.com/article/10.1007/s00586-020-06379-7

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

*Pang, M. Y. C., Ashe, M. C., Eng, J. J., Mckay, H. A., & Dawson, A. S. (2006). A 19-week exercise program for people with chronic stroke enhances bone geometry at the tibia: A peripheral quantitative computed tomography study. Osteoporosis International, 17(11), 1615–1625. https://doi.org/10.1007%2Fs00198-006-0168-0

Pauzenberger, L., Syré, S., & Schurz, M. (2013). “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: A systematic review of the literature and a glimpse into the future. Arthroscopy, 29(10), 1712–1721. https://doi.org/10.1016/j.arthro.2013.05.009

Radovanović, G., Bohm, S., Peper, K. K., Arampatzis, A., & Legerlotz, K. (2022). Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. Sports Medicine - Open, 8(1), 149. https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-022-00545-5

*Rantalainen, T., Nikander, R., Daly, R. M., Heinonen, A., & Sievänen, H. (2011). Exercise loading and cortical bone distribution at the tibial shaft. Bone, 48(4), 786–791. https://doi.org/10.1016/j.bone.2010.11.013

Rosa, N., Simoes, R., Magalhães, F. D., & Marques, A. T. (2015). From mechanical stimulus to bone formation: A review. Medical Engineering & Physics, 37(8), 719–728. https://doi.org/10.1016/j.medengphy.2015.05.015

Rothschild, J. A., & Bishop, D. J. (2020). Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Medicine, 50(1), 25–53. https://link.springer.com/article/10.1007/s40279-019-01185-8

Salvi, A. M., & DeMali, K. A. (2018). Mechanisms linking mechanotransduction and cell metabolism. Current Opinion in Cell Biology, 54, 114–120. https://doi.org/10.1016/j.ceb.2018.05.004

*Specker, B., & Binkley, T. (2003). Randomized Trial of Physical Activity and Calcium Supplementation on Bone Mineral Content in 3- to 5-Year-Old Children. Journal of Bone and Mineral Research, 18(5), 885–892. https://doi.org/10.1359/jbmr.2003.18.5.885

Stricker, P. R., Faigenbaum, A. D., McCambridge, T. M., & COUNCIL ON SPORTS MEDICINE AND FITNESS. (2020). Resistance Training for Children and Adolescents. Pediatrics, 145(6), e20201011. https://doi.org/10.1542/peds.2020-1011

*Vainionpää, A., Korpelainen, R., Sievänen, H., Vihriälä, E., Leppäluoto, J., & Jämsä, T. (2007). Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur. Bone, 40(3), 604–611. https://doi.org/10.1016/j.bone.2006.10.005

*Valdimarsson, Ö., Linden, C., Johnell, O., Gardsell, P., & Karlsson, M. K. (2006). Daily Physical Education in the School Curriculum in Prepubertal Girls during 1 Year is Followed by an Increase in Bone Mineral Accrual and Bone Width—Data from the Prospective Controlled Malmö Pediatric Osteoporosis Prevention Study. Calcified Tissue International, 78(2), 65–71. https://link.springer.com/article/10.1007/s00223-005-0096-6

Vincent, T. L., & Wann, A. K. T. (2019). Mechanoadaptation: Articular cartilage through thick and thin. The Journal of Physiology, 597(5), 1271–1281. https://doi.org/10.1113/JP275451

Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. Journal of Applied Physiology, 126(1), 30–43. https://doi.org/10.1152/japplphysiol.00685.2018

Wang, J. H.-C. (2006). Mechanobiology of tendon. Journal of Biomechanics, 39(9), 1563–1582. https://doi.org/10.1016/j.jbiomech.2005.05.011

Wang, N. (2017). Review of Cellular Mechanotransduction. Journal of Physics D: Applied Physics, 50(23), 233002. https://doi.org/10.1088%2F1361-6463%2Faa6e18

*Watson, S. L., Weeks, B. K., Weis, L. J., Horan, S. A., & Beck, B. R. (2015). Heavy resistance training is safe and improves bone, function, and stature in postmenopausal women with low to very low bone mass: Novel early findings from the LIFTMOR trial. Osteoporosis International, 26(12), 2889–2894. https://link.springer.com/article/10.1007/s00198-015-3263-2

*Werkhausen, A., Albracht, K., Cronin, N. J., Paulsen, G., Bojsen-Møller, J., & Seynnes, O. R. (2018). Effect of Training-Induced Changes in Achilles Tendon Stiffness on Muscle-Tendon Behavior During Landing. Frontiers in Physiology, 9, 794. https://doi.org/10.3389%2Ffphys.2018.00794

*Westh, E., Kongsgaard, M., Bojsen-Moller, J., Aagaard, P., Hansen, M., Kjaer, M., & Magnusson, S. P. (2007). Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women. Scandinavian Journal of Medicine & Science in Sports, 18(1), 23–30. https://doi.org/10.1111/j.1600-0838.2007.00638.x

Wiesinger, H.-P., Rieder, F., Kösters, A., Müller, E., & Seynnes, O. R. (2016). Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity? PLOS ONE, 11(6), e0158441. https://doi.org/10.1371/journal.pone.0158441

Wilson, J. M., Loenneke, J. P., Jo, E., Wilson, G. J., Zourdos, M. C., & Kim, J.-S. (2012). The effects of endurance, strength, and power training on muscle fiber type shifting. Journal of Strength and Conditioning Research, 26(6), 1724–1729. https://doi.org/10.1519/JSC.0b013e318234eb6f

*Winters-Stone, K. M., Dobek, J. C., Bennett, J. A., Maddalozzo, G. F., Ryan, C. W., & Beer, T. M. (2014). Skeletal Response to Resistance and Impact Training in Prostate Cancer Survivors. Medicine & Science in Sports & Exercise, 46(8), 1482–1488. https://doi.org/10.1249/MSS.0000000000000265

*Winters-Stone, K. M., Dobek, J., Nail, L. M., Bennett, J. A., Leo, M. C., Torgrimson-Ojerio, B., Luoh, S.-W., & Schwartz, A. (2013). Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: A randomized controlled trial. Osteoporosis International, 24(5), 1637–1646. https://link.springer.com/article/10.1007/s00198-012-2143-2

*Winters-Stone, K. M., & Snow, C. M. (2006). Site-specific response of bone to exercise in premenopausal women. Bone, 39(6), 1203–1209. https://doi.org/10.1016/j.bone.2006.06.005

*Wochna, K., Nowak, A., Huta-Osiecka, A., Sobczak, K., Kasprzak, Z., & Leszczyński, P. (2019). Bone Mineral Density and Bone Turnover Markers in Postmenopausal Women Subjected to an Aqua Fitness Training Program. International Journal of Environmental Research and Public Health, 16(14), 2505. https://doi.org/10.3390/ijerph16142505

Yuan, Y., Chen, X., Zhang, L., Wu, J., Guo, J., Zou, D., Chen, B., Sun, Z., Shen, C., & Zou, J. (2016). The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Progress in Biophysics and Molecular Biology, 122(2), 122–130. https://doi.org/10.1016/j.pbiomolbio.2015.11.005

*Zhang, Z. J., Ng, G. Y. F., & Fu, S. N. (2015). Effects of habitual loading on patellar tendon mechanical and morphological properties in basketball and volleyball players. European Journal of Applied Physiology, 115(11), 2263–2269. https://link.springer.com/article/10.1007/s00421-015-3209-6

Zhao, Z., Li, Y., Wang, M., Zhao, S., & Fang, J. (2020). Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med, 24(10), 5408–5419. https://doi.org/10.1111/jcmm.15204

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 Felix León, Andres Mestre, Lorelu Priego, Juan Carlos Vera

Descargas

Los datos de descargas todavía no están disponibles.