Revista geológica de América central ISSN Impreso: 0256-7024 ISSN electrónico: 2215-261X

OAI: https://www.revistas.ucr.ac.cr/index.php/geologica/oai
Geology of the Sheet 3247-i Monterrey, Alajuela, Costa Rica
Fragmento del mapa geológico y ubicación de puntos de afloramiento, análisis geoquímicos y dataciones radiométricas dentro de los seis procesos de sedimentación y vulcanismo del área de estudio
HTML (Español (España))
PDF (Español (España))
EPUB (Español (España))

Supplementary Files

JPG: zircones y sus edades concordantes precámbricas y fanerozoicas (Español (España))

Keywords

Geochemistry
Geochronology
40K/40Ar
40Ar/39Ar
206Pb/238U
207Pb/206Pb
Structural geology
Stratigraphy
Detrital zircons
Geoquímica
Geocronología
40K/40Ar
40Ar/39Ar
206Pb/238U
207Pb/206Pb
Geología estructural
Estratigrafía
Zircones detríticos

How to Cite

Rojas-Barrantes, M. (2022). Geology of the Sheet 3247-i Monterrey, Alajuela, Costa Rica. Revista geológica De América Central, 67, 1–47. https://doi.org/10.15517/rgac.v67i0.52191

Abstract

The Monterrey sheet is located in the northwest of Costa Rica in the limit of the active volcanic arc and the San Carlos basin (SCB), associated with the sedimentation, the volcanism and the tectonic of the back-arc region of southern Central America. The objective and methods were to develop the geological mapping of the sedimentary and volcanic deposits, the tectonic and the sampling for radiometric dating, geochemistry and petrography of the different units. The older rocks are conformed by clastic sediments belonging to Venado Formation, deposited in a shelf and transitional continental environment of Middle–Upper Miocene age. U-Pb geochronology for the youngest group of detrital zircons in these sediments constrained to a maximum depositional age of 6,9 ± 0,2 Ma, suggesting a late Miocene to Pliocene age sedimentation of the basin in this region of the SCB, which is in agreement with previous microforaminiferal and palynological dating and one 40K/40Ar radiometric age of the overlying volcanism on this sediments. The Pliocene sedimentation corresponds to the sealing of the basin associated with the Central American isthmus closure, recognized by an angular discordance associated with the tectonic event registered at the end of the Miocene and the beginning of the Pliocene. The Upper Miocene volcanism is subalkaline of marked tholeiitic and calc-alkaline afinity and transition to both series, varying from basalts to dacites. The geochemical analysis suggest a strong differentiation of these magmas from OIB type source (calc-alkaline/alkaline rocks) to MORB type source (tholeiitic basalts) modified by the subduction processes. The Plio-Pleistocene pyroclastic volcanism is associated to ignimbrites of calc-alkaline dacitic-andesitic composition. Related to primary magmas, the analysis suggest greater or high degrades of partial melting with an input of fluids and carbonate pelagic sediments from the subducting slab to the mantle metasomatism. The primitive mantle normalization shows LILE enrichments and HFSE depletions associated with the input of marine fluids and sediments dehydration of the subducted slab to the mantle metasomatism, typical of arc volcanism with an alkaline component that may be more related to the back-arc rather than the intra-arc volcanism of northern Costa Rica. The Monteverde Formation of the lower Pleistocene, cover most of the area of about 78%, forming transitional and sedentary soils mainly of andesite composition, associated also to a pyroclastic and volcaniclastic volcanism in the southwest of the sheet area. The Buena Vista Formation conform the subsequent volcanism of Monteverde Formation and is constituted by volcaniclastic deposits (lahars) of very indurate volcanic breccia. The pyroclastic Holocene deposits of Arenal volcano (tephra) are calc-alkaline of andesitic-basaltic andesite composition and are distributed to the south of the sheet. The compressive tectonic of the Middle to Upper Miocene is registered in the area by the tectonic deformation of thrusting faults in the sediments of the Venado Formation and the transtensive tectonic of the Plio-Pleistocene by mainly strike-slip faults considered active. The Cenozoic and Mesozoic detrital zircon ages of the Venado Formation, they register the development and evolution of the southern Central America volcanic arc, meanwhile, the Proterozoic and Paleozoic detrital zircon ages a possible connection with northern Central America or southern Mexico, or a possible Gondwanic or Laurentian origin. However, it could also indicate the presence of hidden continental crust fragments underneath southern Central America. These ancient detrital zircons ages constitute a new contribution to the geochronological knowledge and evolution of these continental complexes and provide a paradigm for future studies about the geologic and geotectonic evolution of the Central America isthmus. eology; stratigraphy; detrital zircons.

https://doi.org/10.15517/rgac.v67i0.52191
HTML (Español (España))
PDF (Español (España))
EPUB (Español (España))

References

Allmendinger, R. W., Cardozo, N. C., y Fisher, D. (2012). Structural Geology Algorithms: Vectors & Tensors in structural geology. Cambridge, Inglaterra: Cambridge University Press.

Amos, B. J., y Rogers, P. J. (1983). The Geology and Exploration Geochemistry of the Cordillera Tilarán-Montes del Aguacate Gold Field, Costa Rica. San José: Institute of Geological Sciences, Overseas Division, Open File Report.

Astorga, A., Fernández, J., Barboza, G., Campos, L., Obando, J., Aguilar, A., y Obando, L. (1991). Cuencas sedimentarias de Costa Rica: evolución geodinámica y potencial de hdrocarburos. Revista Geológica de América Central, 13, 25–59.

Astorga, A. (1992). Descubrimiento de corteza oceánica Mesozoica en el norte de Costa Rica y el sur de Nicaragua. Revista Geológica de América Central, 14, 109–112.

Alvarado, G. E., Kussmaul, S., Chiesa, S., Gillot, P.-Y., Appel, H., Wörner, G., y Rundle, C. (1992). Resumen cronoestratigráfico de las rocas ígneas de Costa Rica basado en dataciones radiométricas. Journal of South American Earth Sciences, 6(3), 151–168.

Alvarado, G. E. (2009). Geología de la Hoja Fortuna, Alajuela, Costa Rica. Revista Geológica de América Central, 41, 117–122.

Alvarado, G. E., y Gans, P. B. (2012). Síntesis Geocronológica del Magmatismo, Metamorfismo y Metalogenia de Costa Rica, América Central. Revista Geológica de América Central, 46, 7-122.

Ballestero, L., Dobrinescu, M., Jager, G., y Mayers, I. (1995). An Integrated Geological and Geophysical Interpretation of the San Carlos Basin, Costa Rica. Circum-Pacific Council for Energy and Mineral Resources. En R. L. Miller, G. Escalante, J. A. Reinemund y M. J. Bergin (eds), Energy and Mineral Potential of the Central American-Caribbean Regions (Earth Science Series, 16; pp. 95–1003). Heidelberg: Springer Berlin.

Barat, F., Mercier de Lépinay, B., Sosson, M., Müller, C., Baumgartner, P. O., y Baumgartner-Mora, C. (2014). Transition from the Farallon Plate subduction to the collision between South and Central America: Geological evolution of the Panama Isthmus. Tectonophysics, 622, 145–167. doi: 10.1016/j.tecto.2014.03.008.

Barboza, G., Fernández, J., Barrientos, J., y Bottazi, G. (1997). Costa Rica: Petroleum geology of the Caribbean margin. The Leading Edge, 16 (12), 1787-1794.

Barboza, G. y Segura, G. (1998). San Carlos Basin time structure map on blue horizon top of Miocene. San José: Refinadora Costarricense de Petróleo (Recope).

Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. En P. Henderson (ed). Rare Earth Element Geochemistry (Vol. 2, pp. 63-114). Amsterdam: Elsevier.

Brandes, C., y Winsemann, J. (2018). From incipient island arc to doubly-vergent orogen: A review of geodynamic models and sedimentary basin-fills of southern Central America. Wiley Island Arc, e12255. doi: 10.1111/iar.12255

Calvo, V., y Bolz, A. (1987). La secuencia de Venado, un estuario lagunar del Mioceno Medio, San Carlos, Costa Rica. Revista Geológica de América Central, 6, 1-24.

Cardoso, N., y Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193-205. doi: 10.1016/j.cageo.2012.07.02

Carr, M. J., Saginor, I., Alvarado, G. E., Bolge, L. L., Lindsay, F. N., Milidakis, K., Turrin, B. D., Feigenson, M. D., y Swisher, C. C. (2007). Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochemical, Geophysical and Geosystems, 8, Q06001. doi: 10.1029/2006GC001396

Chaves, R., y Sáenz, R. (1974). Geología de la Cordillera de Tilarán. Informes técnicos y notas geológicas, 53, 1-49.

Cigolini, C., y Chaves, R. (1986). Geological, petrochemical and metallogenic characteristics of the Costa Rica gold belt: contribution to new exploratios. Geologische Rundschau, 75(3), 737–754.

Denyer, P., y Arias, O. (1991). Estratigrafía de la Región Central de Costa Rica. Revista Geológica de América Central, 12, 1-59.

Denyer, P., Montero, W., y Alvarado, G. E. (2003). Atlas tectónico de Costa Rica. San José: Editorial Universidad de Costa Rica.

Denyer, P., y Alvarado, G. (2007). Mapa Geológico de Costa Rica. Escala 1:400 000. San José: Librería Francesa.

Durán, P., Porras, H., y Rojas, M. (2017). Estructura de la Cuenca de San Carlos: Evidencias de inversión tectónica durante el Mioceno Superior/Plioceno en el norte de Costa Rica. Presentado en Congreso Geológico Universidad Nacional, Costa Rica. UCR-UNA-DGM.

Flores, K. E., y Gazel E. (2020). A 100 m.y. record of volcanic arc evolution in Nicaragua. Island Arc, 29, e12346. doi: 10.1111/iar.12346

Folk, R. (1980). Petrology of sedimentary rocks. Austin, Texas: Hemphill Publishing Company.

Galbraith, R. F. (1990). The radial plot: Graphical assessment of spread in ages. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3), 207–214.

Gazel, E., Alvarado, G. E., Obando, J., y Alfaro, A. (2005). Geología y Evolución Magmática del Arco de Sarapiquí, Costa Rica. Revista Geológica de América Central, 32, 13-31.

Gazel, E., Hoernle, K., Feigenson, M. D., Szymanski, D., Hauff, F., y van den Boggard, P. (2009). Galapagos-OIB signature in southern Central America: Mantle refertilization by arc-hot spot interaction. Geochemistry Geophysics Geosystems, 10(2). doi: 10.1029/2008GC002246

Guillot, P-Y., Chiesa, S., y Alvarado, G. E. (1994). Chronostratigraphy of Upper Miocene-Quaternary Volcanism in Northern Costa Rica. Revista Geológica de América Central, 17, 45-53.

Irvine T. M., y Baragar W. R. (1971). A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. doi: 10.1139/e71-055

Janoušek, V., Farrow, C. M., y Erban, V. (2006). Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6), 1255-1259.

Janoušek, V., Moyen, J-F., Martin, H.M., Erban, V., y Farrow, C. (2016). GCDkit 4.1. Geochemical Modelling of Igneous Process – Principles and Recipes in R Language. Berlin, Heidelberg: Springer-Verlag.

Keating, L. F. (1985). Evaluation of the Hydrocarbon Potential of Costa Rica. San José: Petro-Canada International Assistance Corporation (PCIAC).

Kobayashi, D., P. LaFemina, H. Geirsson, E. Chichaco, A. A. Abrego, H. Mora, y Camacho, E. (2014). Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation. Geochemical, Geophysical and Geosystems, 15. doi: 10.1002/2014GC005234.

Kussmaul, S., Tournon, J., y Alvarado, G. E. (1991). Evolución de las rocas plutónicas y volcánicas subalcalinas del Neógeno y Cuaternario de Costa Rica. Presentado en Simposio sobre Magmatismo Andino y su marco Tectónico. Manizales, Colombia.

Kussmaul, S. (2000). Estratigrafía de las rocas ígneas. En P. Denyer y S. Kussmaul (eds), Geología de Costa Rica (pp. 63-86). Cartago:Editorial Tecnología de Costa Rica.

Kycl, P., Zacek, V., Cech, S., Grygar, R., Hrazdira, P., Huapaya, S. ... Svabenicka, L. (2010). Estudio geológico de las Hojas Miramar, Chapernal y Juntas, Costa Rica. Praga–San José: Servicio Geológico Checo (CGS) y Dirección de Geología y Minas (DGM).

Le Bas M. J., Le Maitre R. W., Streckeisen A., y Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3), 745-750. doi: 10.1093/petrology/27.3.745

Linkimer, L., y Aguilar, T. (2000). Estratigrafía sedimentaria. En P. Denyer y S. Kussmaul (eds), Geología de Costa Rica (pp. 43-62). Cartago: Editorial Tecnología de Costa Rica.

Malavassi, E. (1962). Nota geológica preliminar sobre la región norte de Tilarán, entre laguna Cote y áreas de Venado. San José: Departamento de Geología Minas y Petróleo. Manuscrito inédito.

Malavassi, E., y Madrigal, R. (1970). Reconocimiento geológico de la Zona Norte de Costa Rica. Informes técnicos y notas geológicas, 38, 1-18.

Marrett, R. A., y Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973-986.

Mescua, J. F., Porras, H., Durán, P., Giambiagi, L., De Moor, M., Cascante, M., Salazar, E., Protti, M., y Poblete, F. (2017). Middle to Late Miocene Contractional Deformation in Costa Rica Triggered by Plate Geodynamics. Tectonics, 36. doi: 10.1002/2017TC004626

Montero, W. (2001). Neotectónica de la región central de Costa Rica: Frontera oeste de la microplaca de Panamá. Revista Geológica de América Central, 24, 29-56.

Montero, W. (2014). Neotectónica en la Revista Geológica de América Central. Revista Geológica de América Central, Número Especial 2014: 30 Aniversario, 83-98. doi: 10.15517/rgac.v0i0.16571

Montero, W., Lewis, J. C., y Araya, M. C. (2017). The Guanacaste Vocanic Arc Sliver of Northwestern Costa Rica. Scientific Reports, 7, 1797. doi: 10.1038/s41598-017-01593-8

Obando, L. (1986). Estratigrafía de la Formación Venado y rocas sobreyacientes (Mioceno-Reciente), provincia de Alajuela, Costa Rica. Revista Geológica de América Central, 5, 73-104.

Peccerillo, A., y Taylor, SR. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineral Petrology, 58, 63-81. doi: 10.1007/BF00384745

Petro-Canada International Assistance Corporation (PCIAC)/Refinadora Costarricense de Petróleo (Recope). (1987). Tonjibe 1, Final Well Report. XL Geological Consultants. Manuscrito inédito.

Petro-Canada International Assistance Corporation (PCIAC)/Refinadora Costarricense de Petróleo (Recope). (1988). Geological Evaluation of the Well Pataste 1. AHM International. Manuscrito inédito.

Pettijohn, F. J. (1975). Sedimentary rocks (3rd edition). New York: Harper and Row.

Pizarro, D. (1993). Los pozos profundos perforados en Costa Rica: Aspectos litológicos y bioestratigráficos. Revista Geológica de América Central, 15, 81-85.

Porras, H., Alvarado, G. E., Arroyo-Solórzano, M., Durán, P., y Echandi, E. (2021). La depresión tectónica de Nicaragua en Costa Rica: estructura interna, estilo estructural, edad, extensión y actividad de la cuenca de San Carlos. Revista Geológica de América Central, 65, 1-22.

Rojas, M. (2019). Mapa geológico de la hoja Monterrey (3247-I). Escala 1:50 000. San José: Dirección de Geología y Minas, Ministerio de Ambiente y Energía.

Rojas-Barrantes, M., Huapaya-Rodriguez Parra, S., Solari, L. A., y Žáček, V. (2021). U-Pb geochronology of detrital zircons from San Carlos Basin, Costa Rica: evidence of Miocene volcanism and implications for the Precambrian and Paleozoic history of the Central American isthmus. Journal of South American Earth Sciences, 110(103311). doi: 10.1016/j.jsames.2021.103311

Schulz, K., Koeppen, R., Ludington, S., Kussmaul, S., y Gray, K. (1987). Marco vulcanológico de los yacimientos auríferos de la cordillera de Tilarán y los montes del Aguacate, Costa Rica. En USGS, DGMH, UCR (eds), Evaluación de los recursos minerales de la República de Costa Rica (I-map Series, 1865; pp. 34-43). Reston, Va.: USGS.

Sen Gupta, K., Malavassi, L. R., y Malavassi, E. (1986). Late Miocene shore in northern Costa Roca: Benthic foraminiferal record. Geology, 14(3), 218-220.

Solari, L. A., González-León, C. M., Ortega-Obregón, C., Valencia-Moreno, M., y Rascón-Heimpel, M. A (2018). The Proterozoic of NW Mexico revisited: U–Pb geochronology and Hf isotopes of Sonoran rocks and their tectonic implications. International Journal of Earth Sciences, 107(3), 845-861. doi: 10.1007/s00531-017-1517-2.

Soto, G. J.. y Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. San José: Memoria VIII Seminario de Ingeniería Estructural y Sísmica.

Sun S. S., y McDonough W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. En A. D. Saunders y M. Norry (eds), Magmatism in Ocean Basins (Special Publications 42(1), pp. 313-345). Londres: Geological Society of London. doi: doi:10.1144/gsl.sp.1989.042.01.19

Taylor, H. (1966). Informe interno visita a Venado. San José: Costarricense de Electricidad. Manuscrito inédito.

Tournon, J., y Alvarado, G. E. (1997). Mapa geológico de Costa Rica. Escala: 1:500 000. Cartago: Editorial Tecnológica de Costa Rica.

Ulloa, A., Aguilar, T., Goicoechea, C., y Ramirez, R. (2011). Descripción, clasificación y aspectos geológicos de las zonas kársticas de Costa Rica. Revista Geológica de América Central, 45, 53-74.

Van de Kamp, P. C. (1985). Evaluation of Stratigraphy, Source Rock Potential, Tectonics, Structure, and Reservoir Potential for Hydrocarbon Exploration in Costa Rica. GeoResources Associates, Partners Cornelis Corporation. San José: Recope. Manuscrito inédito.

Zamboni, D., Gazel, E., Ryan, J. G., Cannatelli, C., Lucchi, F., Atlas, Z., y De Vivo, B. (2016). Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems. Geochemistry, Geophysics, Geosystems, 17, 2034–2053.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright (c) 2022 Martín Rojas-Barrantes

Downloads

Download data is not yet available.