Revista geológica de América central ISSN Impreso: 0256-7024 ISSN electrónico: 2215-261X

OAI: https://www.revistas.ucr.ac.cr/index.php/geologica/oai
Estimation. Part II: Double porosity model
PDF (Español (España))

Keywords

Acuífero fracturado
modelo analítico MIM
ensayo trazador
manantial
hidrogeología
Fractured aquifer
analytic model MIM
tracer test
spring
hydrogeology

How to Cite

Macías, J., & Vargas, A. (2017). Estimation. Part II: Double porosity model. Revista geológica De América Central, 56. https://doi.org/10.15517/rgac.v0i56.29237

Abstract

MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information.
https://doi.org/10.15517/rgac.v0i56.29237
PDF (Español (España))

References

Anderson, S. R., Kuntz, M. A., y Davis, L. (1999). Geologic controls of hydraulic conductivity in the Snake River Plain Aquifer at and near the Idaho National Engineering and Environmental Laboratory, Idaho. Idaho: Geological Survey, Water-Resources Investigations Report 99-403.

Bouyère, S., Carabin, G. y Dassargues, A. (2005). Influence of Injection Conditions on Field Tracer Experiments. Ground Water, 43(3), 389-400.

Casey F., Logsdon S., Horton R., y Jaynes Dan B. (1998). Measurement of Field Soil Hydraulic and Solute Transport Parameters. Soil Science Society of America Journal, 62, 1172–1178.

Daly, C. (1982). Evaluation of procedures for determining selected aquifer parameters. CRREL Report 82-41. Hanover, N.H.: U.S. Army Corp of Engineers. U.S. Army Toxic and Hazardous Materials Agency.

Fetter., C. W. (1993). Contaminant hydrogeology. Nueva Jersey: Prentice Hall.

Gelhar L., Welty C. y Rehfeldt K. (1992). A critical review of data on field-scale dispersion in aquifers. Water Resources Research, 28(7), 1955-1974.

Griffioen, J. W., Barry, D. A. y Parlange, J. Y. (1998). Interpretation of two-region model parameters. Water Resources Research, 34(3), 373-384.

Guangyao G., Shaoyuan F., Hongbin Z., Guanhua H., y Xiaomin, M. (2009). Evaluation of Anomalous Solute Transport in a Large Heterogeneous Soil Column with Mobile-Immobile Model. Journal of Hydrologic Engineering, 9, 966-974.

Gvirtzman H., Paldor N., Magaritz M. y bachmat Y. (1988). Mass Exchange Between Mobile Freshwater and Immobile Saline Water in the Unsaturated Zone. Water Resources Research, 24(10), 1638-1644.

Hellerich, L. A., Oates, P. M, Johnson, C. R., Nikolaidis, N. P., Harvey C. F. y Gschwend, P. M. (2003). Bromide transport before, during, and after colloid mobilization in push-pull tests and the implications for changes in aquifer properties. Water Resources Research, 39(10), 15-1: 15-11.

Hoek, E. y Bray, J. W. (1981). Rock Slope Engineering (3ra ed.). Londres: Institution of Mining and Metallurgy.

Johnson, A. (2004). Saturated transport of atrazine under two tillage systems. En D. E. Stott, R. H. Mohtar y G. C. Steinhardt (eds), Sustaining the global farm. 10th International Soil Conservation Organization Meeting (pp. 283-287). West Lafayette, IN: International Soil Conservation Organization.

Kohne, J., Kohne, S., Mohanty, B. y Simunek, J. (2004). Inverse Mobile–Immobile Modeling of Transport During Transient Flow: Effects of Between-Domain Transfer and Initial Water Content. Vadose Zone Journal, 3, 1309-1321.

Kreft, A. y Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33, 1471-1480.

Kuntz, B. (2010). Laboratory, field, and modeling analysis of solute transport behavior at the shale hills critical zone observatory (Tesis de maestría inédita). Pennsylvania State University, Pennsylvania, Estados Unidos.

Lapidus, L. y Amundson, N. R. (1952). Mathematics of adsorption in beds. VI. The effects of longitudinal diffusion in ion exchange and chromatographic columns. Journal of Physical Chemistry, 56, 984-988.

Levitt, D. G., Newell, D. L., Stone, W. F. y Wykoff, D. S. (2005). Surface Water-Groundwater Connection at the Los Alamos Canyon Weir Site: Part 1. Monitoring Site Installation and Tracer Tests. Vadose Zone Journal, 4, 708-717.

Macías, J.,Vargas, A. y Frutos, F. (2016). Estimación de parámetros hidrodinámicos en un acuífero volcánico libre fracturado en Costa Rica. Parte I. Revista Geológica de América Central, 55, 167-183.

Martial J. S., Join J. l. y Coudray, J. (2000). Hydrodynamical investigations in a recent volcanic aquifer (Reunion Island) using single well tracer test. Groundwater – Past achievements and Future challenges (pp. 221-224). Presentado en Proc. XXX IAH Congress on Groundwater, Cape Town, South Africa.

Mayes, M. A., Jardine, P. M., Mehlhorn, T. L., Bjornstad, B. N., Ladd, J. L. y Zachara, J. M. (2003). Transport of multiple tracers in variably saturated humid region structured soils and semi-arid region laminated sediments. Journal of Hydrology, 275(3-4), 141-161.

Nkedi-Kizza P., Biggar J. W., van Genuchten M. T., Wierenga P. J., Selim, H. M., Davidson J. M. y Nielsen D. R. (1983). Modeling Tritium and Chloride 36 transport through and aggregated oxisol. Water Resources Research, 19(3), 691-700.

Pace M. N., Mayes M. A., Jardine P. M., Mehlhorn T. L., Zachara J. M. y Bjornstad, B. N. (2003). Quantifying the Effects of Small-Scale Heterogeneities on Flow and Transport in Undisturbed Cores from the Hanford Formation. Vadose Zone Journal, 2, 664-676.

Padilla Y. I., Jim Yeh, T. C., y Conklin, M. H. (1999). The effect of water content on solute transport in unsaturated porous media. Water Resources Research, 35(11), 3303-3313.

Parini M., Acuña J. y Laudiano M. (1996). Reinjected water return at Miravalles geothermal reservoir, Costa Rica: Numerical modelling and observations (pp. 127- 134). Presentado en Proc. Twenty-first Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

Qian J. Z. Chen Z., Zhan H. B. y Luo. S. H. (2011a). Solute transport in a filled single fracture under non-Darcian flow. International Journal of Rock Mechanics y Mining Sciences, 48(2011), 132-140.

Qian J. Zhan H., Chen Z., y Ye, H. (2011b). Experimental study of solute transport under non-Darcian flow in a single fracture. Journal of Hydrology, 399, 246-254.

Raven, K., Novakowski, K. y Lapcevic, P. (1988). Interpretation of field tracer test of a single fracture using a transient solute storage model. Water Resources Research, 24(12), 2019-2032.

Sanford W., Konikow L., Rowe G., y Brantley, S. (1995). Groundwater transport of crater-lake brine at Poas Volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 64, 269-293.

Seyfried, M. S. y Rao, P. (1987). Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects. Soil Science Society of America Journal, 51(6), 1434-1444.

Torres-Mora Y. y Axelsson, G. (2015). Chemical tracer test in Las Pailas Geothermal Field, Costa Rica. Presentado en Proc. World Geothermal Congress 2015, Melbourne, Australia. Recuperado de Disponible en: http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/14070.pdf

van Genuchten, M. (1981). Non-Equilibrium transport parameters from miscible displacement experiments. Riverside, California: U.S. Salinity Laboratory. Department of Agriculture Science and Education Administration. Research Report 119.

Youngho, S. (2006). Characterizing the fate and transport of solutes in soil (Tesis de doctorado inédita). The University of Tennessee, Knoxville.

Ze-Yuan Z. (1999). Determination of flow and transport properties in a deep unsaturated soil profile (Tesis de doctorado inédita). University of Arizona, Arizona, Estados Unidos.

Comments

Downloads

Download data is not yet available.