Odovtos International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://www.revistas.ucr.ac.cr/index.php/Odontos/oai
Efecto anticancerígeno relacionado con el autofago del extracto de uva y el extracto de tomate: estudio ex vivo
PDF (English)
HTML (English)
EPUB (English)

Palabras clave

HEp-2; Resveratrol; Lycopene; miRNA-20a; SQSTM1.
HEp-2; Resveratrol; Licopeno; miRNA-20a; SQSTM1.

Cómo citar

Elshafei, M. M., Helmy, I. M., Sayed, M. M., Farag, D. B., Shebl, I. M., Ghazy, S. E., & Afifi, N. S. (2023). Efecto anticancerígeno relacionado con el autofago del extracto de uva y el extracto de tomate: estudio ex vivo. Odovtos International Journal of Dental Sciences, 25(2), 78–92. https://doi.org/10.15517/ijds.2023.53752

Resumen

Las células se someten a autofagia para salvarse de lesiones, pero la autofagia progresiva puede provocar la muerte celular. Este estudio caracterizó y comparó el efecto de los extractos de uva (resveratrol) y tomate (licopeno) y su combinación en la modulación de miARN relacionado con la autofagia y su gen diana en la línea celular de carcinoma de células escamosas. Se realizó análisis de acoplamiento para extractos y genes seleccionados. Se utilizaron ensayos de metil tiazol tetrazolio para evaluar la citotoxicidad de los extractos y su combinación frente a las células HEp-2. qRT-PCR se utilizó para cuantificar los cambios en la expresión génica. Los datos fueron analizados estadísticamente. El miARN-20a se identificó como un efector potencial en el cáncer de laringe y el secuenciasoma-1 (SQSTM1) fue su gen diana. El análisis de acoplamiento mostró que el resveratrol interactuaba con miRNA-20a y mostraba menos afinidad hacia SQSTM1. Se predijeron enlaces de hidrógeno e interacciones hidrofóbicas. Por el contrario, el licopeno mostró menos afinidad hacia el miARN-20a que el resveratrol. El aumento de las dosis de resveratrol, licopeno y su combinación indujo una reducción estadísticamente significativa en el porcentaje medio de viabilidad y los cambios medios en la expresión de miRNA-20a y SQSTM1 en las células HEp-2 tratadas. La correlación de Pearson mostró una correlación positiva estadísticamente significativa entre miRNA-20a y SQSTM1 (R=0,812, p≤0,001). Los extractos de uva y tomate y su combinación muestran una citotoxicidad prometedora contra las células HEp-2 de forma dependiente de la dosis y el tiempo. Ambos extractos reducen la expresión de miRNA-20a y SQSTM1 con la posterior inhibición de la autofagia y promoción de la apoptosis en células HEp-2.

https://doi.org/10.15517/ijds.2023.53752
PDF (English)
HTML (English)
EPUB (English)

Citas

Aljaber A., Al-Nasser L., El-Metwally A. Epidemiology of oral cancer in Arab countries. Saudi Med J. 2016; 37: 249-255. https://doi.org/10.15537/smj.2016.3.11388

Greenlee H. Natural products for cancer prevention. Semin Oncol Nurs. 2012; 28 (1): 29-44. https://doi.org/10.1016/j.soncn.2011.11.004

Paul B., Masih I., Deopujari J., Charpentier C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J Ethnopharmacol. 1999; 68 (1-3):71-76. https://doi.org/10.1016/s0378-8741(99)00044-6

Mohammed Z., Al-Jumaily E. In vitro cytotoxic study for partially purified Resveratrol extracted from grape skin fruit Vitis vinifera Resveratrol Vitis vinifera. Biotechnol Res Cent. 2009; 3 (2): 40-47. https://doi.org/10.24126/jobrc.2009.3.2.66

Opie L.H., Lamont K., Lecour S. Wine and heart health: learning from the French paradox. SA Heart J. 2011; 8 (3): 172-177. https://doi.org/10.24170/8-3-1896

Ferrero M.E., Bertelli A.E., Fulgenzi A., Pellegatta F., Corsi M.M., Bonfrate M., et al. Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am J Clin Nutr. 1998; 68 (6): 1208-1214. https://doi.org/10.1093/ajcn/68.6.1208

Gajowik A., Dobrzyńska M. Lycopene-antioxidant with radioprotective and anticancer properties. A review. Ann Natl Inst Hyg. 2014; 65 (4): 263-271. PMID: 25526570

Agarwal A., Shen H., Agarwal S., Rao V. Lycopene content of tomato products: Its stability, bioavailability and in vivo antioxidant properties. J Med Food. 2001; 4 (1): 9-15. https://doi.org/10.1089/10966200152053668

Ota A., Tagawa H., Karnan S., Tsuzuki S., Karpas A., Kira S., et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma identification and characterization of a novel gene, C13 or f25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004; 64 (9): 3087-3095. https://doi.org/10.1158/0008-5472.can-03-3773

Kelkel M., Schumacher M., Dicato M., Diederich M. Antioxidant and anti-proliferative properties of lycopene. Free Radic Res. 2011; 45 (8): 925-940. https://doi.org/10.3109/10715762.2011.564168

Liu C., Wang R., Zhang B., Hu C., Zhang H. Protective effects of lycopene on oxidative stress, proliferation and autophagy in iron supplementation rats. Biol Res. 2013; 46 (2): 189-200. http://dx.doi.org/10.4067/S0716-97602013000200011

de Bruin E., Medema J. Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev. 2008; 34 (8): 737-749. https://doi.org/10.1016/j.ctrv.2008.07.001

Li Y., Kevin M. Autophagy and cancer. Exp Mol Med. 2012; 44 (8): 109-120. http://dx.doi.org/10.1101/cshperspect.a008821

Levine B., Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005; 115 (10): 2679-2688. https://doi.org/10.1172/JCI26390

White E. Q & A: targeting autophagy in cancer- a new therapeutic? Cancer Metab. 2014; 2: 14. http://dx.doi.org/10.1186/2049-3002-2-14

Hansen T., Johansen T. Following autophagy step by step. BMC Biol. 2011; 9 (1): 39. https://doi.org/10.1186/1741-7007-9-39

Inoue Y., Klionsky D. Regulation of macroautophagy in Saccharomyces cerevisiae. Semin. Cell Dev Biol. 2010 Sept; 21 (7): 664-670. https://doi.org/10.1016/j.semcdb.2010.03.009

Levine B., Klionsky D.J. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker's yeast fuel advances in biomedical research. Proc Natl Acad Sci U S A. 2017 Jan 10; 114 (2):201-205. https://doi: 10.1073/pnas.1619876114

Xu Z., Yang L., Xu S., Zhang Z., Cao Y. The receptor proteins: Pivotal roles in selective autophagy. Acta Biochim Biophys Sin (Shanghai). 2015 Aug;47 (8): 571-580. https://doi.org/10.1093/abbs/gmv055

Puissant A., Fenouille N., Auberger P. When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res. 2012 Jun 28; 2 (4): 397-413. PMCID: PMC3410580.

Kim M., Song S., Lee J., Yoo N., Lee S. Expressional and mutational analyses of ATG5 gene in prostate cancers. APMIS. 2011 Nov; 119 (11): 802-807. https://doi.org/10.1111/j.1600-0463.2011.02812.x

Ladoire S., Chaba K., Martins I., Sukkurwala A., Adjemian S., Michaud M., et al. Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy. 2012 Aug 1; 8 (8): 1175-1184. https://doi.org/10.4161/auto.20353

Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. N Engl J Med. 2013 Feb 14; 368 (7): 651-662. https://doi.org/10.1056/NEJMra1205406

White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012 Apr 26; 12 (6): 401-410. https://doi.org/10.1038/nrc3262

Liang Y., Liang C. MicroRNAs: an emerging player in autophagy. Science Open Res. 2015 March; 2015. https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.A181CU.v1.

Lionetti M., Biasiolo M., Agnelli L., Todoerti K., Mosca L., Fabris S., et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Rev Lit Arts Am. 2009 Dec 10; 114 (25): 20-26. https://doi.org/10.1182/blood-2009-08-237495

Elkayam E., Kuhn C.D., Tocilj A., Haase A.D., Greene E.M., Hannon G.J., et al. The structure of human argonaute-2 in complex with miR-20a. Cell. 2012 Jul 6;150 (1): 100-110. https://doi.org/10.1016/j.cell.2012.05.017

Ciuffa R., Lamark T., Tarafder A., Guesdon A., Rybina S., Hagen W., et al. Electron cryo-microscopy structure of PB1-p62 type T filaments. Cell Rep. 2015 May 13;11:748-758. https://doi.org/10.2210/pdb4UF9/pdb

Hegazy A., El Din K., El-Fetouh M., Ahmed S. Clinical outcome and survival of head and neck cancer patients treated at Clinical Oncology Department, Menoufia University. Menoufia Med J. 2014 April 1; 27 (2): 359-362. https://doi.org/10.4103/1110-2098.141709

Palka K.T., Slebos R.J., Chung C.H. Update on molecular diagnostic tests in head and neck cancer. Semin Oncol. 2008 Jan; 35 (3): 198-210. https://doi.org/10.1053/j.seminoncol.2008.03.002

Berindan-Neagoe I., Monroig C., Pasculli B., Calin G.A. MicroRNA genome: A treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014 Sep-Oct; 64 (5): 311-336. https://doi.org/10.3322/caac.21244

Zhou J., Jiang J., Wang S., Xia X. Oncogenic role of microRNA-20a in human uveal melanoma. Mol Med Rep. 2016 Aug; 14 (2): 1560-1566. https://doi.org/10.3892/mmr.2016.5433

Zhang L., Xiang P., Han X., Wu L., Li X., Xiong Z. Decreased expression of microRNA-20a promotes tumor progression and predicts poor prognosis of cutaneous squamous cell carcinoma. Int J Clin Exp Pathol. 2015 Sep 1; 8 (9): 11446-11451. PMID: 26617873; PMCID: PMC4637689.

Wane D., Lengacher C.A. Integrative review of lycopene and breast cancer. Oncol Nurs Forum. 2006 Jan 1; 33 (1): 127-137. https://doi.org/10.1188/06.ONF.127-137

Gupta S., Jawanda M.K., Arora V., Mehta N., Yadav V. Role of lycopene in preventing oral diseases as a nonsurgical aid of treatment. Int J Prev Med. 2015 Aug 5; 6: 70. https://doi.org/10.4103/2008-7802.162311

Elgass S., Cooper A., Chopra M. Lycopene treatment of prostate cancer cell lines inhibits adhesion and migration properties of the cells. Int J Med Sci. 2014 Jul 2; 11 (9): 948-954. https://doi.org/10.7150/ijms.9137

Teodoro AJ, Oliveira FL, Martins NB, Maia A, Martucci RB, Borojevic R. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer Cell Int. 2012 Aug 6; 12 (1): 36. https://doi.org/10.1186/1475-2867-12-36

Sclafani R.A., Agarwal R., Tyagi A., Siriwardana S., Takahata T., Frederick B., et al. Chemoprevention by resveratrol in head-and-neck cancer. J Radiat Oncol. 2014 Feb 1; 88 (2): 512. https://doi.org/10.1016/j.ijrobp.2013.11.154

Joe A.K., Liu H., Suzui M., Vural M.E., Xiao D., Weinstein I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res. 2002 March; 8 (3): 893-903. PMID: 11895924.

Gambini J., Inglés M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., et al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. 2015 Jan 28; 2015: 837042. https://doi.org/10.1155/2015/837042

Zheng W., Blot W.J., Shu X.O., Gao Y.T., Ji B.T., Ziegler R.G., et al. Diet and other risk factors for laryngeal cancer in Shanghai, China. Am J Epidemiol. 1992 Jul 15; 136 (2): 178-191. https://doi.org/10.1093/oxfordjournals.aje.a116484

Park Y.O., Hwang E.S., Moon T.W. The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells. BioFactors. 2005 Jan; 23 (3): 129-139. https://doi.org/10.1002/biof.5520230302

Yang T., Wang L., Zhu M., Zhang L., Yan L. Properties and molecular mechanisms of resveratrol: A review. Pharmazie 2015 Aug; 70 (8): 501-506. https://doi.org/10.1691/ph.2015.5571

Sun W., Wang W., Kim J., Keng P., Yang S., Zhang H., et al. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv Exp Med Biol. 2008 Feb; 614: 179-186. https://doi.org/10.1007/978-0-387-74911-2_21

Pirayesh J., Mehrali H. Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: an overview. Cell J. 2015 Jan 13; 16 (4): 386-391. https://doi.org/10.22074/cellj.2015.485

Zhi X., Lamperska K., Golusinski P., Schork N.J., Luczewski L., Golusinski W., et al. Expression levels of insulin-like growth factor 1 and 2 in head and neck squamous cell carcinoma. Growth Horm IGF Res. 2014 Aug; 24 (4): 137-141. https://doi.org/10.1016/j.ghir.2014.04.003

Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J Nat Cancer Inst. 1999 Feb 17 ; 91 (4): 317-331. https://doi.org/10.1093/jnci/91.4.317

Hu A.B., Lenarduzzi M., Krushel T., Waldron L., Pintilie M., Shi W., et al. Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010 Feb 15; 16 (4): 1129-1139. https://doi.org/10.1158/1078-0432.CCR-09-2166

Yang R., Fu Y., Zeng Y., Xiang M., Yin Y., Li L., et al. Serum miR-20a is a promising biomarker for gastric cancer. Biomed Rep. 2017 Apr; 6 (4): 429-434. https://doi.org/10.3892/br.2017.862

Venkatadri R., Muni T., Iyer A.K., Yakisich J.S., Azad N. Role of apoptosis-related miRNAs in resveratrol- induced breast cancer cell death. Cell Death Dis. 2016 Feb 18; 7 (2): e2104. https://doi.org/10.1038/cddis.2016.6

Pan J., Shen J., Si W., Du C., Chen D., Xu L., et al. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget. 2017 Sep 12; 8 (39): 65743-65758. https://doi.org/10.18632/oncotarget.19445

Tang F.Y., Pai M.H., Kuo Y.H., Wang X.D. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer. Mol Nutr Food Res. 2012 Oct; 56 (10): 1520-1531. https://doi.org/10.1002/mnfr.201200098

Han J., Kioi M., Chu W.S., Kasperbauer J.L., Strome S.E., Puri R.K. Identification of potential therapeutic targets in human head & neck squamous cell carcinoma. Head Neck Oncol. 2009 Jul 14; 1: 27. https://doi.org/10.1186/1758-3284-1-27

Duran A., Amanchy R., Linares J.F., Joshi J., Abu-Baker S., Porollo A., et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell. 2011 Oct 7; 44 (1); 134-146. https://doi.org/10.1016/j.molcel.2011.06.038

Liang X., Guan X. p62/SQSTM1: A potential molecular target for treatment of atherosclerosis. Front Lab Med. 2017 Jun;1(2):104-106. https://doi.org/10.1016/j.flm.2017.06.007

Lippai M., Lőw P. The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int. 2014 Jun 12; 2014:832704. https://doi.org/10.1155/2014/832704

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 CC-BY-NC-SA 4.0

Descargas

Los datos de descargas todavía no están disponibles.