Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://www.revistas.ucr.ac.cr/index.php/Odontos/oai
Development, Characterisation and Biocompatibility Analysis of a Collagen-Gelatin-Hydroxyapatite Scaffold for Guided Bone Regeneration
PDF
HTML
EPUB

Keywords

Biocollagen; Guided bone regeneration; Hydroxyapatite; Periodontitis; Quality of life
Biocolágeno; Regeneración ósea guiada; Hidroxiapatita; Periodontitis; Calidad de vida.

How to Cite

Shankar, P., Arumugam, P., & Kannan, S. (2024). Development, Characterisation and Biocompatibility Analysis of a Collagen-Gelatin-Hydroxyapatite Scaffold for Guided Bone Regeneration. Odovtos - International Journal of Dental Sciences, 235–248. https://doi.org/10.15517/ijds.2024.59612

Abstract

Guided Bone Regeneration (GBR) is the choice of treatment for improving the horizontal and vertical bone volume through bone grafting. GBR membranes work on the principle of preventing epithelial migration into the defect space while maintaining the space for cell migration and differentiation at the defect site. Hydroxyapatite has been commonly used as a bone graft for infrabony defects. The study was conducted at the Department of Biomaterials at Saveetha Dental College. GBR membrane was prepared and its material characterization was done using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) analysis, Fourier Transform Infrared Radiation (FTIR), and Confocal Analysis. The developed GBR membrane revealed SEM properties conducive to cell attachment. EDX and FTIR analysis showed the successful development of the collagen-gelatin-hydroxyapatite membrane. Cell culture and confocal analysis revealed excellent biocompatibility with a homogenous layer of viable cells. The developed composite GBR membrane is a biogenic membrane with relevant biomineralization potential that should be applied for GBR applications.

https://doi.org/10.15517/ijds.2024.59612
PDF
HTML
EPUB

References

Prichard J.F. The etiology, diagnosis and treatment of the intrabony defect. J Periodontol. 1967; 38 (6): 455-465.

Le Thieu M.K., Mauland E.K., Verket A. Satisfaction and preferences among patients with both implant-supported single crown and tooth-supported fixed dental prosthesis: A pilot study. Acta Odontol Scand. 2023; 45 (3): 56-58

Benic G.I., Hämmerle C.H.F. Horizontal bone augmentation by means of guided bone regeneration. Periodontol 2000. 2014; 66 (1): 13-40.

Moses O., Pitaru S., Artzi Z, Nemcovsky CE. Healing of dehiscence-type defects in implants placed together with different barrier membranes: A comparative clinical study. Clin Oral Implants Res. 2005; 16 (2): 210-235.

Schwarz F., Herten M., Ferrari D., Wieland M., Schmitz L., Engelhardt E., Becker J. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): An immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007; 36 (12): 1198-206.

Owens K.W., Yukna R.A. Collagen membrane resorption in dogs: A comparative study. Implant Dent. 2001; 10 (1): 49.

Zhao S., Pinholt E.M., Madsen J.E., Donath K. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. J Craniomaxillofac Surg. 2000; 28 (2): 116-22.

Dewi A.H., Ana I.D. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon. 2018; 4 (10): 78-80.

Bergese P., Hamad-Schifferli K. Nanomaterial interfaces in biology: Methods and protocols. Humana. 2016; 45 (2): 87-93

Radin S.R., Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994; 28 (11): 1303-1309.

El-Ghannam A.R. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004; 69 (3): 490-501.

Bayani M., Torabi S., Shahnaz A., Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. Biotechnol Biotechnol Equip. 2017; 23 (8): 732-745.

Buser D., Dula K., Belser UC., Hirt HP., Berthold H. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995; 15 (1): 10-29.

Kim Y.K., Ku J.K. Guided bone regeneration. J Korean Assoc Oral Maxillofac Surg. 2020; 46 (5): 361-366.

Sam G., Pillai B.R.M. Evolution of barrier membranes in periodontal regeneration-“Are the third generation membranes really here?” J Clin Diagn Res. 2014; 8 (12): 14-7.

Kim J., Lee C.M., Moon S.Y., Jeong Y.I., Kim C.S., Lee S.Y. Biomedical membrane of fish collagen/gellan gum containing bone graft materials. Materials. 2022; 15 (8): 45-49.

Mathew-Steiner S.S., Roy S., Sen C.K. Collagen in wound healing. Bioengineering (Basel). 2021; 8 (5): 67-70.

Binlateh T., Thammanichanon P., Rittipakorn P., Thinsathid N., Jitprasertwong P. Collagen-based biomaterials in periodontal regeneration: current applications and future perspectives of plant-based collagen. Biomimetics. 2022; 7 (2): 35-40.

Karamanos N.K., Theocharis A.D., Piperigkou Z., Manou D., Passi A., Skandalis S.S., et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021; 288 (24): 6850-912.

Buehler M.J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA. 2006; 103 (33): 12285-12290.

Lukin I., Erezuma I., Maeso L., Zarate J., Desimone MF., Al-Tel TH, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022; 14 (6): 43-47.

Capati M.L.F., Nakazono A., Yamamoto K., Sugimoto K., Yanagiguchi., Yamada S., et al. Fish collagen promotes the expression of genes related to osteoblastic activity. Int J Polym Sci. 2016; 35 (4): 65-69.

Loiselle A.E., Wei L., Faryad M., Paul E.M., Lewis G.S., Gao J., et al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng Part A. 2013; 19 (15): 1704-1709.

Abdelaziz D., Hefnawy A., Al-Wakeel E., El-Fallal A., El-Sherbiny I.M. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2020; 28: 51-62.

Yang F., Both S.K., Yang X., Walboomers XF., Jansen JA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 2009; 5 (9): 3295-3304.

Behring J., Junker R., Walboomers X.F., Chessnut B., Jansen J.A. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008; 96 (1): 1-11.

Sayed M.E., Mugri M.H., Almasri M.A., Al-Ahmari M.M., Bhandi S., Madapusi T.B., et al. Role of stem cells in augmenting dental implant osseointegration: A systematic review. Coat World. 2021; 11 (9): 1035.

Caballé-Serrano J., Munar-Frau A., Delgado L., Pérez R., Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J Mech Behav Biomed Mater. 2019; 97: 13-20.

Kim J.Y., Park J.B. Various coated barrier membranes for better guided bone regeneration: A review. Coat World. 2022; 12 (8): 1059-1060.

Chu C., Deng J., Man Y., Qu Y. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes. Mater Sci Eng C Mater Biol Appl. 2017; 78: 258-264.

Higuchi J., Fortunato G., Woźniak B., Chodara A., Domaschke S., Męczyńska-Wielgosz S., et al. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials. 2019; 9 (11): 1552-1559.

Gavinho S.R., Pádua A.S., Sá-Nogueira I., Silva J.C., Borges J.P., Costa L.C., et al. Fabrication, structural and biological characterization of zinc-containing bioactive glasses and their use in membranes for guided bone regeneration. Materials. 2023; 16 (3): 1625-1630.

Comments

Copyright (c) 2024 CC-BY-NC-SA 4.0

Downloads

Download data is not yet available.