Abstract
The purpose of this study was to compare the effect of different disinfection protocols of dentin on bond strength of an MDP-containing universal adhesive. Twelve extracted mandibular third molars were separated horizontally at the mid-coronal of crown to get smooth and sound dentin surfaces using low-speed diamond saw. The teeth were randomly fallen into four groups: chlorhexidine (CHX), ozone, Er,Cr:YSGG laser irradiation (LASER) and no treatment (control). After cavity disinfection application, a universal adhesive (G-Premio Bond) was applied to the surface of dentin according to self-etch mode as instructed by the manufacturer. After incremental built-up of composite resin (Charisma Smart), the specimens were immersed in distilled water at 37°C for 24h. Dentin/composite beams with 1 mm² cross sectional area were produced and micro-tensile bond strength (µTBS) was applied on these beams (n=20). Failure mods were determined under a stereomicroscope at ×40. The resin penetration of samples stained with Rhodamine B fluorochrome dye was examined with a confocal laser scanning microscope. Statistical analysis was performed with SPSS-22. Test results were analyzed using One-way Anova and Tukey HSD Post-Hoc tests (p<0.05). The µTBS value of control (35.13±6.20) was the highest statistically among the groups (p<0.05). The lowest µTBS were obtained by LASER (19.25±4.66) and CHX (23.07±7.01). There was no significant difference between CHX and LASER, and between CHX and ozone (p>0.5). All applications of cavity disinfection procedures decreased the µTBS of the resin-dentin interface.
References
Besic F. The fate of bacteria sealed in dental cavities. Journal of Dental Research. 1943; 22 (5): 349-54.
Nedeljkovic I., Teughels W., De Munck J., Van Meerbeek B., Van Landuyt K.L. Is secondary caries with composites a material-based problem? Dental Materials. 2015; 31 (11): e247-e77.
Meiers J.C., Kresin J.C. Cavity disinfectants and dentin bonding. Oper Dent. 1996; 21 (4): 153-9.
Dalkilic E.E., Arisu H.D., Kivanc B.H., Uctasli M.B., Omurlu H. Effect of different disinfectant methods on the initial microtensile bond strength of a self-etch adhesive to dentin. Lasers Med Sci. 2012; 27 (4): 819-25.
Gurgan S., Firat E., Baysan A., Gutknecht N., Imazato S. Effects of ozone and ND:YAG laser pretreatment on bond strength of self-etch adhesives to coronal and root dentin. Photomed Laser Surg. 2010; 28 Suppl 2:S3-9.
Akturk E., Bektas O.O., Ozkanoglu S., EG G.A. Do ozonated water and boric acid affect the bond strength to dentin in different adhesive systems? Niger J Clin Pract. 2019; 22 (12):1758-64.
Al Deeb L., Bin-Shuwaish M.S., Abrar E., Naseem M., Al-Hamdan R.S., Maawadh A.M., et al. Efficacy of chlorhexidine, Er Cr YSGG laser and photodynamic therapy on the adhesive bond integrity of caries affected dentin. An in-vitro study. Photodiagnosis Photodyn Ther. 2020; 31:101875.
McDonnell G., Russell A.D. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999; 12 (1): 147-79.
Breschi L., Mazzoni A., Nato F., Carrilho M., Visintini E., Tjäderhane L., et al. Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study. Dental materials. 2010; 26 (4): 320-5.
Shen J., Xie H., Wang Q., Wu X., Yang J., Chen C. Evaluation of the interaction of chlorhexidine and MDP and its effects on the durability of dentin bonding. Dental Materials. 2020; 36 (12): 1624-34.
Ricci H.A., Sanabe M.E., de Souza Costa C.A., Pashley D.H., Hebling J. Chlorhexidine increases the longevity of in vivo resin–dentin bonds. European Journal of Oral Sciences. 2010; 118 (4): 411-6.
Baysan A., Whiley R.A., Lynch E. Antimicrobial effect of a novel ozone- generating device on micro-organisms associated with primary root carious lesions in vitro. Caries Res. 2000;34(6):498-501.
Baysan A., Lynch E. Effect of ozone on the oral microbiota and clinical severity of primary root caries. Am J Dent. 2004; 17 (1): 56-60.
Fagrell T.G., Dietz W., Lingstrom P., Steiniger F., Noren J.G. Effect of ozone treatment on different cariogenic microorganisms in vitro. Swed Dent J. 2008; 32 (3): 139-47.
Celik C., Ozel Y., Bagis B., Erkut S. Effect of laser irradiation and cavity disinfectant application on the microtensile bond strength of different adhesive systems. Photomed Laser Surg. 2010; 28 (2): 267-72.
Arnabat J., Escribano C., Fenosa A., Vinuesa T., Gay-Escoda C., Berini L., et al. Bactericidal activity of erbium, chromium:yttrium-scandium-gallium-garnet laser in root canals. Lasers Med Sci. 2010; 25 (6): 805-10.
Fried D., Ashouri N., Breunig T., Shori R. Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med. 2002; 31 (3): 186-93.
Arslan S., Yazici A.R., Gorucu J., Pala K., Antonson D.E., Antonson S.A., et al. Comparison of the effects of Er,Cr:YSGG laser and different cavity disinfection agents on microleakage of current adhesives. Lasers Med Sci. 2012; 27 (4): 805-11.
Perdigao J., Sezinando A., Monteiro P.C. Laboratory bonding ability of a multi-purpose dentin adhesive. Am J Dent. 2012; 25 (3):153-8.
Hanabusa M., Mine A., Kuboki T., Momoi Y., Van Ende A., Van Meerbeek B., et al. Bonding effectiveness of a new 'multi-mode' adhesive to enamel and dentine. J Dent. 2012; 40 (6): 475-84.
Van Landuyt K.L., Yoshida Y., Hirata I., Snauwaert J., De Munck J., Okazaki M., et al. Influence of the chemical structure of functional monomers on their adhesive performance. J Dent Res. 2008; 87 (8): 757-61.
Yoshihara K., Nagaoka N., Okihara T., Kuroboshi M., Hayakawa S., Maruo Y., et al. Functional monomer impurity affects adhesive performance. Dental Materials. 2015; 31 (12): 1493-501.
Tian F., Zhou L., Zhang Z., Niu L., Zhang L., Chen C., et al. Paucity of nanolayering in resin-dentin interfaces of MDP-based adhesives. Journal of dental research. 2016; 95 (4): 380-7.
Van Meerbeek B., Yoshihara K., Yoshida Y., Mine A., De Munck J., Van Landuyt K. State of the art of self-etch adhesives. Dental materials. 2011; 27 (1): 17-28.
N K.S., K K.S., Subba Reddy V.V. Effect of Dentin Disinfection with 2% Chlorhexidine Gluconate and 0.3% Iodine on Dentin Bond Strength: An in vitro Study. Int J Clin Pediatr Dent. 2017; 10 (3): 223-8.
Rodrigues P.C., Souza J.B., Soares C.J., Lopes L.G., Estrela C. Effect of ozone application on the resin-dentin microtensile bond strength. Oper Dent. 2011; 36 (5): 537-44.
Zhou J., Tan J., Yang X., Xu X., Li D., Chen L. MMP-inhibitory effect of chlorhexidine applied in a self-etching adhesive. Journal of Adhesive Dentistry. 2011; 13 (2): 111.
Pashley D.H., Tao L., Boyd L., King G.E., Horner J.A. Scanning electron microscopy of the substructure of smear layers in human dentine. Arch Oral Biol. 1988; 33 (4): 265-70.
Ercan E., Erdemir A., Zorba Y.O., Eldeniz A.U., Dalli M., Ince B., et al. Effect of different cavity disinfectants on shear bond strength of composite resin to dentin. J Adhes Dent. 2009; 11 (5): 343-6.
Wagner A., Wendler M., Petschelt A., Belli R., Lohbauer U. Bonding performance of universal adhesives in different etching modes. J Dent. 2014; 42 (7): 800-7.
Turkun M., Ozata F., Uzer E., Ates M. Antimicrobial substantivity of cavity disinfectants. Gen Dent. 2005; 53 (3): 182-6.
Di Hipólito V., Rodrigues F.P., Piveta F.B., da Cunha Azevedo L., Alonso R.C.B., Silikas N., et al. Effectiveness of self-adhesive luting cements in bonding to chlorhexidine-treated dentin. Dental materials. 2012; 28 (5): 495-501.
Giacomini M., Scaffa P., Chaves L., Vidal C., Machado T., Honório H., et al. Role of proteolytic enzyme inhibitors on carious and eroded dentin associated with a universal bonding system. Operative dentistry. 2017; 42 (6): E188-E96.
Polydorou O., Pelz K., Hahn P. Antibacterial effect of an ozone device and its comparison with two dentin-bonding systems. Eur J Oral Sci. 2006; 114 (4): 349-53.
Rueggeberg F.A., Margeson D.H. The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res. 1990; 69 (10): 1652-8.
Cavalli V., Giannini M., Carvalho R.M. Effect of carbamide peroxide bleaching agents on tensile strength of human enamel. Dent Mater. 2004; 20 (8): 733-9.
Turkun M., Turkun L.S., Celik E.U., Ates M. Bactericidal effect of Er,Cr:YSGG laser on Streptococcus mutans. Dent Mater J. 2006; 25 (1): 81-6.
Schoop U., Kluger W., Moritz A., Nedjelik N., Georgopoulos A., Sperr W. Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med. 2004; 35 (2): 111-6.
Cardoso M.V., Coutinho E., Ermis R.B., Poitevin A., Van Landuyt K., De Munck J., et al. Influence of Er,Cr:YSGG laser treatment on the microtensile bond strength of adhesives to dentin. J Adhes Dent. 2008; 10 (1): 25-33.
Yazici A.R., Karaman E., Ertan A., Ozgunaltay G., Dayangac B. Effect of different pretreatment methods on dentin bond strength of a one-step self-etch adhesive. J Contemp Dent Pract. 2009; 10 (1): 41-8.
Oznurhan F., Ozturk C., Ekei E.S. Effects of different cavity‑disinfectants and potassium titanyl phosphate laser on microtensile bond strength to primary dentin. Nigerian journal of clinical practice. 2015; 18 (3): 400-4.
Ayar M.K., Yildirim T., Yesilyurt C. Effects of Er,Cr:YSGG laser parameters on dentin bond strength and interface morphology. Microsc Res Tech. 2015; 78 (12): 1104-11.
Ramos T.M., Ramos-Oliveira T.M., Moretto S.G., de Freitas P.M., Esteves-Oliveira M., de Paula Eduardo C. Microtensile bond strength analysis of adhesive systems to Er:YAG and Er,Cr:YSGG laser-treated dentin. Lasers Med Sci. 2014; 29 (2): 565-73.
Ceballo L., Toledano M., Osorio R., Tay F.R., Marshall G.W. Bonding to Er-YAG-laser-treated dentin. J Dent Res. 2002; 81 (2): 119-22.
Titley K., Caldwell R., Kulkarni G. Factors that affect the shear bond strength of multiple component and single bottle adhesives to dentin. Am J Dent. 2003;16 (2):120-4.
Pashley D.H., Sano H., Ciucchi B., Yoshiyama M., Carvalho R.M. Adhesion testing of dentin bonding agents: a review. Dent Mater. 1995; 11 (2): 117-25.