Nutrición Animal Tropical ISSN electrónico: 2215-3527

OAI: https://www.revistas.ucr.ac.cr/index.php/nutrianimal/oai
Determinación del contenido energético de materiales forrajeros a través de la relación entre la técnica de producción de gas in vitro y la ecuación mecanicista del NRC (2001)
Vacas en un potrero caminando
PDF
HTLM

Archivos suplementarios

Audio

Palabras clave

alimentación
rumiantes
contenido nutricional
energía
feeding
ruminants
nutritional content
energy

Resumen

El objetivo de este estudio fue estimar el contenido de energía metabolizable (EM) de fuentes forrajeras utilizadas en Costa Rica por medio de la ecuación del NRC (2001) y las ecuaciones utilizadas en la metodología de producción de gas in vitro a las 24 horas de incubación (PG24h). La composición química, bromatológica y la producción de gas se analizaron en el Centro de Investigación en Nutrición Animal (CINA). Se seleccionaron las dos ecuaciones de la metodología de gas con los mejores coeficientes de determinación respecto a la ecuación NRC (2001): Steingass y Menke (1980) y Menke y Steingass (1988). Mediante un análisis de correlación de Pearson y un análisis de regresión lineal se evaluó la relación entre la composición nutricional de los alimentos y ambas metodologías de estimación de energía. Los forrajes con mayor y menor EM obtenida con la ecuación NRC (2001) fueron el Ryegrass (2,59 Mcal kg/MS)  y Camerún (1,79 Mcal kg/MS). De acuerdo a la ecuación del NRC (2001) se determinó que la fibra detergente neutro (FDN), fibra detergente ácido (FDA) y lignina influyen negativamente en la concentración de energía (R2= -0,56; -0,54; -0,35; p<0,05, respectivamente), mientras que la proteína cruda (PC) y el extracto etéreo (EE) tienen una correlación positiva. La ecuación con el coeficiente de determinación más alto (R2=0,72) considera las variables de PG24h, PC, FDN y lignina. La producción de gas no se ve afectada por la concentración de PC, cenizas y EE (p>0,05), pero se ve afectada negativamente por la FDN, FDA y la lignina, con coeficientes de correlación de Pearson de -0,44, -0,32 y -0,33 (p<0,05)respectivamente. El forraje con mayor PG24h fue la caña de azúcar, seguido de Festulolium y Ryegrass, mientras que el pasto Camerún y la Cratylia obtuvieron valores menores. El Ryegrass y el Camerún fueron los forrajes con mayor y menor energía respectivamente, estimados a partir de la ecuación de gas seleccionada. Las fracciones fibrosas se correlacionaron negativamente con la energía determinada mediante la ecuación de gas, mientras que la PC y EE presentan una relación positiva. La técnica de producción de gases demostró ser efectiva para estimar el contenido energético de fuentes forrajeras, a partir de una metodología que incluye menos análisis y por ende deriva en un menor costo por concepto de análisis de laboratorio.

https://doi.org/10.15517/nat.v14i1.41475
PDF
HTLM

Citas

Abaş I., Özpinar H., Kutay H., Kahraman R., Eseceli H. 2005. Determination of the metabolizable energy (ME) and net energy lactation (NEL) contents of some feeds in the marmara region by In vitro gas technique. Turk. J. Vet. Anim. Sci. 29: 751-757.

ANKOMRF Gas Production System. 2012. Operator´s Manual. ANKOM TECHNOLOGY.

AOAC (Association of Official Analytical Chemist). 1998. Official methods of analysis of AOAC International. 16th ed, 4th rev. Gaithersburg, MD: AOAC International, USA.

Azevêdo J., Valadares-Filho S., Detmann E., Pina D., Pereira L., Oliveira K., Fernandes H., Souza N. 2011. Predição de frações digestíveis e valor energético de subprodutos agrícolas e agroindustriais para bovinos. Revista Brasileira de Zootecnia. 40(2): 391-402.

Boga M., Yurtseven S., Kilic U., Aydemir S., Polat T. 2014. Determination of nutrient contents and In vitro gas production values of some legume forages grown in the harran plain saline soils. Asian Australas. J. Anim. Sci. 27(6): 825-831.

Bruni M., Trujillo A., Facchín L., Saragó L., Chilibroste P. 2014. Evaluación nutricional para rumiantes de la burlanda de sorgo húmeda obtenida de la producción de etanol de ALUR Paysandú. Cangue. 35: 28-38.

Campos P., Valadares S., Detmann E., Cecon P., Leão M., Lucchi B., Souza S., Pereira O. 2010. Consumo, digestibilidade e estimativa do valor energético de alguns volumosos por meio da composição química. Rev. Ceres, Viçosa. 57(1): 79-86.

Cerrillo M., Juarez A. 2004. In vitro gas production parameters in cacti and tree species commonly consumed by grazing goats in a semiarid region of North Mexico. Lives. Res. Rural Develop. 16:4

Cerrillo M., Juárez A., Rivera J., Guerrero M., Ramírez R., Bernal H. 2012. Producción de biomasa y valor nutricional del forraje verde hidropónico de trigo y avena. INTERCIENCIA. 37(12): 906-913.

Detmann E., Paulino M., Cabral L., Valadares-Filho S., Cecon P., Zervoudakis J., Lana R., Leão M., Melo A. 2005. Simulation and validation of digestive kinetic parameters using an in vitro gas production system in crossbred steers with pasture supplementation. R. Bras. Zootec. 34(6):2112–2122.

Detmann E., Tilemahos J., Silva L., Ribeiro V., Júnior R., Valadares S., Queiroz A., Ponciano N., Magno A. 2004. Validação de equações preditivas da fração indigestível da fibra em detergente neutro em gramíneas tropicais. R. Bras. Zootec. 33(6): 1866-1875.

Di Rienzo J., Casanoves F., Balzarini M., Gonzalez L., Tablada M., Robledo C. 2014. InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Evitayani L., Warly A., Fariani T., Fujihara T. 2004. Study in nutritive value of tropical forages in North Sumatra, Indonesia. Asian-Australasian Journal of Animal Science. 17(11): 1518-1523.

Ferro M., Avelino C., Moura A., Moura D., dos Santos J. 2013. Estimativas do valor energético de alimentos para bovinos de corte em condições tropicais: conceitos e aplicações. Enciclopédia Biosfera. 9(16): 1115- 1130.

Giraldo L., Gutiérrez L., Sánchez J., Bolívar P. 2006 Relación entre presión y volumen para el montaje de la técnica in vitro de producción de gas en Colombia. Livestock Research for Rural Development. 18(6).

Kamalak A., Canbolat O. 2010. Determination of nutritive value of wild narrow-leaved clover (Trifolium angustifolium) hay harvested at three maturity stages using chemical composition and in vitro gas production. Tropical Grasslands. 44: 128-133.

Karabulut A., Canbolat O., Kalkan H., Gurbuzol F., Sucu E., Filya I. 2007. Comparison of In vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Aust. J. Anim. Sci. 20(4): 517-522.

Krishnamoorthy U., Soller H., Steingass H., Menke K. 1995. Energy and protein evaluation of tropical feedstuffs for whole tract and ruminal digestion by chemical analyses and rumen inoculum studies in vitro. Animal Feed Science and Technology. 52: 177-188.

Lara P., Canché M., Magaña H., Aguilar E., Sanginés J. 2009. Producción de gas in vitro y cinética de degradación de harina de forraje de morera (Morus alba) mezclada con maíz. Revista Cubana de Ciencia Agrícola. 43(3): 273-279.

Lazo-Salas, G., Rojas-Bourrillon, A., Campos-Granados, C., Zumbado-Ramírez, C., López-Herrera, M. 2018. Caracterización fermentativa y nutricional de mezclas ensiladas de corona de piña con guineo cuadrado Musa (ABB) I. Parámetros fermentativos, análisis bromatológico y digestibilidad in vitro. Nutrición Animal Tropical. 12 (1): 59-79.

Licitra G., Hernández T., Van Soest P. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology. 57(4): 347-358.

Lundberg K., Hoffman P., Bauman L., Berzagui P. 2004. Prediction of forage energy content by near infrared reflectance spectroscopy and summative equations. The Professional Animal Scientist. 20: 262-269.

Magalhães A., Valadares S., Detmann E., Diniz L., Pina D., Azevêdo J., Araújo F., Marcondes M., Fonseca M., Tedeschi L. 2010. Evaluation of indirect methods to estimate the nutritional value of tropical feeds for ruminants. Animal Feed Science and Technology. 155: 44-54.

Mendoza-Martínez G., Plata-Pérez F., Espinosa-Cervantes R., Lara-Bueno A. 2008. Manejo nutricional para mejorar la eficiencia de utilización de la energía en bovinos. Universidad y Ciencia Trópico Húmedo. 24(1): 75-87.

Menke K., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 93: 217-222.

Menke K., Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Develompment. 28: 7-55.

NRC (National Research Council). 1996. Nutrient requirements of beef cattle. 7th rev. Ed. Washington, D.C. National Academy Press. 242 p.

NRC (National Research Council). 2001. Nutrient requirements of dairy cattle. 7th rev. Ed. Washington, D.C. National Academy Press. 381 p.

Oliveira V., Valença R., Santana-Neto J., Santana J., Santos C., Lima I. 2014. Utilização da técnica de produção de gás In vitro para estimar a digestibilidade dos alimentos. Revista Científica de Medicina Veterinária. XII (23). 10 p.

Pirela M. 2005. Valor nutritivo de los pastos tropicales, pp. 176-182. In: C. González-Stagnaro y E. Soto (eds). Manual de ganadería doble propósito. Fundación GIRARZ.

Robinson P., Givens D., Getachew G. 2004. Evaluation of NRC, UC Davis and ADAS approaches to estimate the metabolizable energy values of feeds at maintenance energy intake from equations utilizing chemical assays and in vitro determinations. Animal Feed Science and Technology. 114: 75-90.

Rocha V., Valadares S., Borges Á., Detmann E., Magalhães K., Valadares R., Gonçalves L., Cecon P. 2003. Estimativa do valor energético dos alimentos e validação das equações propostas pelo NRC (2001). R. Bras. Zootec. 32(2): 480-490.

Rojas-Bourrillon, A. 2011. Alimentación de bovinos con rastrojos de piña (Ananas comosus). UTN Informa. 58: 16-20.

Sánchez J., Soto H. 1999. Estimación de la calidad nutricional de los forrajes del cantón de San Carlos. III. Energía para la producción de leche. Nutrición Tropical. 5(1): 31-49.

Seker E. 2002. The determination of the energy values of some ruminant feeds by using digestibility trial and gas test. Revue Méd. Vét. 153(5): 323-328.

Steingass H., Menke K. 1980. Die bestimmung der verdaulichkeit und der gehalte an umsetzbarer energie und nettoenergie-laktation im Hohenheimer futterwerttest. kraftfutter. 11: 534-536.

Van- Soest, P.V., J.B. Robertson, B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Sci ence. 74:3583-3597.

Villalobos L., Sánchez J. 2010. Evaluación agronómica y nutricional del pasto ryegrass perenne tetraploide (Lolium perenne) producido en lecherías de las zonas altas de Costa Rica. II. Valor nutricional. Agronomía Costarricense. 34(1): 43.52.

Weiss W., 1993. Predicting energy values of feeds. J. Dairy. Sci. 76: 1802-1811.

Weiss W., Conrad H., Pierre N. 1992. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology. 39 (1-2): 95–110.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.