Revista de Matemática: Teoría y Aplicaciones ISSN Impreso: 1409-2433 ISSN electrónico: 2215-3373

OAI: https://www.revistas.ucr.ac.cr/index.php/matematica/oai
Slowly rotating curzon-chazy metric
PDF (Español (España))

Keywords

general relativity
solutions of Einstein’s equations
approximation procedures
weak fields
relatividad general
soluciones de las ecuaciones de Einstein
procedimientos de aproximación
campos débiles

How to Cite

Montero-Camacho, P., Frutos-Alfaro, F., Gutiérrez-Chaves, C., & Cordero-García, I. (2015). Slowly rotating curzon-chazy metric. Revista De Matemática: Teoría Y Aplicaciones, 22(2), 265–274. https://doi.org/10.15517/rmta.v22i2.20833

Abstract

A new rotation version of the Curzon-Chazy metric is found. This new metric was obtained by means of a perturbation method, in order to include slow rotation. The solution is then proved to fulfill the Einstein’s equations using a REDUCE program. Furthermore, the applications of this new solution are discussed.
https://doi.org/10.15517/rmta.v22i2.20833
PDF (Español (España))

References

Abdelqader, M.; Lake, K. (2012) “Visualizing Spacetime Curvature via Gradient Flows II: An Example of the Construction of a Newtonian analogue”, Physical Review D 86, 124037 (ArXiv:1207.5496v2 [gr-qc]).

Arianrhod, R; Fletcher, S; McIntosh, C. (1991) “Principal null directions of the Curzon metric”, Classical and Quantum Gravity 8(8): 1519–1528.

Belinski, V; Verdaguer, E. (2004) Gravitational Solitons. Cambridge University Press, United Kingdom.

Carmeli, M. (2001) Classical Fields. World Scientific Publishing, Singapore.

Chandrasekhar, S. (2000) The Mathematical Theory of Black Holes. Oxford, United Kingdom.

Chazy, J. (1924) “Sur le champ de gravitation de deux masses fixes dans la théorie de la relativité”, Bulletin de la Société Mathématique de France 52: 17–38.

Curzon, H. (1924) “Cylindrical solutions of einstein’s gravitation equations”, Proceedings of the London Mathematical Society 23: 477–480.

Ernst, F. J. (1968) “New formulation of the axially symmetric gravitational field problem”, Physical Review 167: 1175–1177.

de Felice, F. (1990) “Potential surfaces for time-like geodesics in the Curzon metric”, General Relativity and Gravitation 23(2): 136–149.

Gautreau, R; Anderson, J. (1967) “Directional singularities in Weyl gravitational fields”, Physics Letters A 25(4): 291–292.

Griffiths, J; Podolský, J. (2009) Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, United Kingdom.

Halilsoy, M. (1992) “New metrics for spinning spheroids in general relativity”, Journal of Mathematical Physics 33: 4225–4230.

Hartle, J. B; Thorne, K. S. (1968) “Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars”, Astrophysical Journal 153: 807–834.

Hearn, A. (1999) REDUCE (User’s and Contributed Packages Manual). Konrad-Zuse-Zentrum für Informationstechnik, Berlin.

Hernández-Pastora, J; Manko, V; Martín, J. (1993) “Some asymptotically flat generalizations of the Curzon metric”, Journal of Mathematical Physics 34: 4760–4774.

Kerr, R. (1963) “Gravitational field of a spinning mass as an example of algebraically special metrics”, Physical Review Letters 11: 237–238.

Lewis, T. (1932) “Some special solutions of the equations of axially symmetric gravitational fields”, Proceedings of the Royal Society (A): 176–192.

Stachel, J. (1968) “Structure of the Curzon metric”, Physics Letters A 27(1): 60–61.

Synge, J. (1960) Relativity: The General Theory. North Holland Publishing, Amsterdam.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2015 Revista de Matemática: Teoría y Aplicaciones

Downloads

Download data is not yet available.