Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://www.revistas.ucr.ac.cr/index.php/ingenieria/oai
Simultaneous saccharification and fermentation of hydrothermally pretreated Jatropha curcas shell for bioethanol production
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Bioenergy; bioethanol; Jatropha curcas shell; liquid hot water pretreatment, simultaneous saccharification and fermentation
Bioenergía; bioetanol; cáscara de Jatropha curcas; pretratamiento con agua caliente, sacarificación y fermentación simultánea

How to Cite

Sinche Arias, D. F., Ramírez Peñaherrera, V. E., & Velalcázar Rhea, C. M. (2021). Simultaneous saccharification and fermentation of hydrothermally pretreated Jatropha curcas shell for bioethanol production. Ingeniería, 32(1), 19–32. https://doi.org/10.15517/ri.v32iNE1.46884

Abstract

Biomass from Jatropha curcas has been studied as a raw material for obtaining renewable energy, due to it is a non-food crop. One of the most promising processes to produce ethanol from lignocellulosic biomass is simultaneous saccharification and fermentation (SSF). In other studies carried out, through SSF experiments the conversion of glucan to ethanol from Jatropha shell pretreated with acid or alkaline medium was evaluated but not through hydrothermal processes. In the present study, the Jatropha curcas shell was hydrothermally pretreated with liquid hot water at 200 ° C for 15 min, and tested in SSF experiments with an enzyme cocktail (Cellic CTec 2) and commercial yeast (Saccharomyces cerevisiae). Different enzyme loadings, sterile media and sizes test were used to assess their impact on ethanol yield. The results showed that the maximum ethanol yield (0.160-0.177 g ethanol / g dry biomass) and the conversion of cellulose (57.71-63.90 %) were achieved with 5% w/w of solids, 15 FPU/g dry biomass, and 1 mg / ml of yeast. Through this research, an alternative is proposed for integral using of the Jatropha curcas crop for a circular economy.

https://doi.org/10.15517/ri.v32iNE1.46884
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Z. Kádár, Z. Szengyel y K. Réczey, “Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol”, Ind. Crops Prod., vol. 20, no. 1, pp. 103–110, 2004, doi: 10.1016/j.indcrop.2003.12.015.

J. Choudhary, S. Singh y L. Nain, “Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass”, Electron. J. Biotechnol., vol. 21, pp. 82–92, 2016, doi: 10.1016/j.ejbt.2016.02.007.

A. Saxena, S. K. Garg y J. Verma, “Simultaneous saccharification and fermentation of waste newspaper to ethanol”, Bioresour. Technol., vol. 42, no. 1, pp. 13–15, 1992, doi: 10.1016/0960-8524(92)90082-9.

J. Ko, J. Bak, M. Jung et al., “Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes”, Bioresour. Technol., vol. 100, no. 19, pp. 4374–4380, 2009, doi: 10.1016/j.biortech.2009.04.026.

P. Alvira, E. Tomás-Pejó, M. Ballesteros y M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review”, Bioresour. Technol., vol. 101, no. 13, pp. 4851–4861, 2010, doi: 10.1016/j.biortech.2009.11.093.

W. Zhang, Y. Lin, Q. Zhang, X. Wang, D. Wu y H. Kong, “Optimisation of simultaneous saccharification and fermentation of wheat straw for ethanol production”, Fuel, vol. 112, pp. 331–337, 2013, doi: 10.1016/j.fuel.2013.05.064.

P. Manzanares, “Integrated hydrolysis, fermentation and co-fermentation of lignocellulosic biomass”, Bioalcohol Prod. Biochem. Convers. Lignocellul. Biomass, pp. 205–223, 2010, doi: 10.1533/9781845699611.3.205.

J. D. Wright, C. E. Wyman y K. Grohmann, “Simultaneous saccharification and fermentation of lignocellulose - Process evaluation”, Appl. Biochem. Biotechnol., vol. 18, no. 1, pp. 75–90, 1988, doi: 10.1007/BF02930818.

López-Gutiérrez, I., Razo-Flores, E., Méndez-Acosta, H.O. et al., Optimization by response surface methodology of the enzymatic hydrolysis of non-pretreated agave bagasse with binary mixtures of commercial enzymatic preparations. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00698-x.

V. C. Pandey, K. Singh, J. S. Singh, A. Kumar, B. Singh y R. P. Singh, “Jatropha curcas: A potential biofuel plant for sustainable environmental development”, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2870–2883, 2012, doi: 10.1016/j.rser.2012.02.004.

V. Ramírez, J. Martí-Herrero, M. Romero y D. Rivadeneira, “Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends”, J. Clean. Prod., vol. 215, pp. 1095–1102, 2019, doi: 10.1016/j.jclepro.2019.01.132.

IICA, “Proyecto Piñón en Ecuador - Galápagos el gran beneficiario Instituto Interamericano de Cooperación para la Agricultura”.https://www.iica.int/es/prensa/noticias/proyecto-pinon-en-ecuador-galapagos-el-gran-beneficiario (accesado en 2020-04-07).

IICA, “Aceite de piñón, una oportunidad para el medio ambiente y para cientos de familias rurales de Ecuador”. https://www.iica.int/es/prensa/noticias/aceite-de-pinon-una-oportunidad-para-el-medio-ambiente-y-para-cientos-de-familias-0 (accesado en 2021-07-13).

W. Ponce, A. Viteri, R. Limongi, J. Pincay, B. Avellán y P. Moreira, “Manual de cosecha y procesamiento del grano de piñon (Jatropha curcas L.) para la obtención de biocombustible”. INIAP - Estación Experimental Portoviejo, Programa de Agroenergía, p. 38, 2020, [En línea]. Disponible en: https://repositorio.iniap.gob.ec/handle/41000/5517.

A. García, C. Cara, M. Moya et al., “Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit shells for ethanol production”, Ind. Crops Prod., vol. 53, pp. 148–153, 2014, doi: 10.1016/j.indcrop.2013.12.029.

E. Visser, D. Filho, M. Tótola, M. Martins y V. Guimarães, “Simultaneous saccharification and fermentation (SSF) of Jatropha curcas shells: Utilization of co-products from the biodiesel production process”, Bioprocess Biosyst. Eng., vol. 35, no. 5, pp. 801–807, 2012, doi: 10.1007/s00449-011-0662-4.

ASTM, “D 1193 -06 (2018) Standard Specification for Reagent Water”, Annu. B. ASTM Stand., vol. 51, no. 7916, pp. 1–6, 2011, doi: 10.1520/D1193-06R18.

A. Sluiter, B. Hames, D. Hyman et al., “Determination of total solids in biomass and total dissolved solids in liquid process samples”, Lab. Anal. Proced NREL/TP-510-42621, no. Marzo 2008, p. 9.

A. Sluiter, B. Hames, R. Ruiz et al., “Determination of structural carbohydrates and lignin in Biomass”, Lab. Anal. Proced NREL/TP-510-42618, no. Abril 2008, p. 17.

B. Adney y J. Baker, “Measurement of Cellulase Activities”, Lab. Anal. Proced NREL/TP-510-42628, no. Enero 2008, p. 8.

I. Amores, I. Ballesteros, P. Manzanares, F. Sáez, G. Michelena y M. Ballesteros, “Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion”, Electron. J. Energy Environ., vol. 1, no. 1, pp. 25–36, 2013, doi: 10.7770/ejee-v1n1-art519.

D. dos Santos, A. Rodrigues, E. Borges, J. Peña y N. Pereira, “Optimization of Fermentation Conditions for the Ethanol Production From Sugarcane Bagasse By Zymomonas Mobilis Using Response Surface Methodology”, Int. J. Adv. Res., vol. 5, no. 9, pp. 1062–1072, 2017, doi: 10.21474/ijar01/5424.

A. Villadiego, N. Sarmiento, J. León y L. Rojas, “Bioethanol Production from Yam (Dioscorea Rotundata) Using Simultaneous Saccharification and Fermentation (SSF)”, TecnoLógicas, vol. 24, no. 50, p. 10, 2021, doi: 10.22430/22565337.1724.

F. S. Navarro-Pineda, S. A. Baz-Rodríguez, R. Handler y J. C. Sacramento-Rivero, “Advances on the processing of Jatropha curcas towards a whole-crop biorefinery”, Renew. Sustain. Energy Rev., vol. 54, pp. 247–269, 2016, doi: 10.1016/j.rser.2015.10.009.

X. Zhuang, W. Wang, Q. Yu et al., “Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products”, Bioresour. Technol., vol. 199, pp. 68–75, 2016, doi: 10.1016/j.biortech.2015.08.051.

M. Ballesteros, J. Oliva, M. Negro, P. Manzanares y I. Ballesteros, “Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875”, Process Biochem., vol. 39, no. 12, pp. 1843–1848, 2004, doi: 10.1016/j.procbio.2003.09.011.

K. Karimi, G. Emtiazi y M. Taherzadeh, “Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae”, Enzyme Microb. Technol., vol. 40, no. 1, pp. 138–144, 2006, doi: 10.1016/j.enzmictec.2005.10.046.

N. Tiso, “Scale up of a solid state fermentation ( SSF ) pilot plant for the production of enzymes by lignocellulose utilization in ecosustainable applications”, University of Tuscia - Viterbo, Departement of Agrobiology and Agrochemistry, 2004.

B. Lonsane, G. Saucedo-Castaneda, M. Raimbault et al., “Scale-up strategies for solid state fermentation systems”, Process Biochem., vol. 27, no. 5, pp. 259–273, 1992, doi: 10.1016/0032-9592(92)85011-P.

N. Hassan, A. Idris, H. El-Enshasy y R. Malek, “Scaling-up of simultaneous saccharification and fermentation of lactic acid from microwave-alkali-treated empty fruit bunches”, BioResources, vol. 12, no. 4, pp. 8001–8013, 2017, doi: 10.15376/biores.12.4.8001-8013.

M. O. Abdulsattar, J. O. Abdulsattar, G. M. Greenway, K. J. Welham y S. H. Zein, “Optimization of pH as a strategy to improve enzymatic saccharification of wheat straw for enhancing bioethanol production”, J. Anal. Sci. Technol., vol. 11, no. 1, 2020, doi: 10.1186/s40543-020-00217-7.

C. Nogueira, C. Padilha y E. dos Santos, “Enzymatic hydrolysis and simultaneous saccharification and fermentation of green coconut fiber under high concentrations of ethylene oxide-based polymers”, Renew. Energy, vol. 163, pp. 1536–1547, 2021, doi: 10.1016/j.renene.2020.10.050.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 Danny Fabricio Sinche Arias

Downloads

Download data is not yet available.