Agronomía Costarricense ISSN Impreso: 0377-9424 ISSN electrónico: 2215-2202

OAI: https://www.revistas.ucr.ac.cr/index.php/agrocost/oai
Inoculación al suelo con <i>Pseudomonas fluorescens, Azospirillum oryzae, Bacillus subtilis</i> y microorganismos de montaña (mm) y su efecto sobre un sistema de rotación soya-tomate bajo condiciones de invernadero
PDF

Palabras clave

azospirillum oryzae
Pseudomonas fluorescens
Bacillus subtilis
microorganismos de montaña (MM)
inoculation
azospirillum oryzae
Pseudomonas fluorescens
Bacillus subtilis
microorganismos de montaña (MM)
inoculación

Cómo citar

Castro Barquero, L., Murillo Roos, M., Uribe Lorío, L., & Mata Chinchilla, R. (2015). Inoculación al suelo con <i>Pseudomonas fluorescens, Azospirillum oryzae, Bacillus subtilis</i> y microorganismos de montaña (mm) y su efecto sobre un sistema de rotación soya-tomate bajo condiciones de invernadero. Agronomía Costarricense, 39(3). https://doi.org/10.15517/rac.v39i3.21787

Resumen

Se evaluó un sistema de rotación soyatomate, con incorporación de biomasa verde y aplicación de inóculos microbianos individuales y en mezcla sobre el crecimiento de las plantas y propiedades edáficas; para ello se evaluaron en invernadero por 24 meses los siguientes 9 tratamientos: solo tomate (T); rotación tomate-soya (TS); rotación tomate-soya con inoculaciones individuales de Azospirillum oryzae (A); de Pseudomonas fluorescens (P); de Bacillus subtilis (B); de microorganismos de montaña (MM); y las inoculaciones en mezcla de B. subtilis y P. fluorescens (BP); de B. subtilis, P. fluorescens y A. oryzae (BPA); de B. subtilis, P. fluorescens, Azospirillum sp. y MM (BPAMM). Se evaluaron las variables físicas: densidad aparente y de partículas; conductividad hidráulica; poros totales; estabilidad de agregados; resistencia a la penetración (RP); las variables químicas: pH; conductividad eléctrica; contenido de N y C; relación C/N; contenido de nutrientes en suelos y foliares; las variables biológicas: respiración de suelos, unidades formadoras de colonias de hongos, bacterias y actinomicetos y el peso fresco y seco foliar. Las variables físicas no fueron afectadas por los tratamientos, con excepción de RP, que fue mayor en el tratamiento T. Las variables biológicas y químicas fueron sensibles a los tratamientos, con valores significativamente más altos en presencia de MM. Destaca el incremento del P en solución de suelo en tratamientos a los que se adicionó MM: pasó de 6 a 20 mg.l-1; esta condición se reflejó además en la cantidad de P en el tejido foliar al final del ensayo. Se determinó que el pH, CE y la respiración del suelo fueron afectados por la interacción entre los tratamientos aplicados y el tiempo transcurrido; los mayores valores se obtuvieron al final del ensayo y en los tratamientos con MM.
https://doi.org/10.15517/rac.v39i3.21787
PDF

Citas

ALVARADO A. 2006. Potential of soil carbon sequestration in Costa Rica. Chapter 8, pp. 147-165. In: R. La.l, C.C. Cerri, M. Bernoux, J. Etchevers and C.E. Cerri (eds.). Carbon sequestration in soils of Latin America. The Haworth Press Inc. USA.

ALVARADO A., CAMACHO M., FERNÁNDEZ J., MEZGER G., MATA R., BERTSCH F., ARAYA M., AVELLÁN M., MURILLO R., RAMÍREZ D., PORTUGUEZ E., FALLAS J., ÁVILA C., MONTERO M., RAIGOSA J., RÍOS V., VAIDES E. 2015. Interpretación del análisis foliar de varias especies forestales latifoliadas del trópico americano. 61 p. In: VIII Congreso Nacional de Suelos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica.

BALOTA E., COLOZZI A., ANDRADE D., DICK R. 2004. Long-term tillage and crop rotation effects on microbial biomassand C and N mineralization in a Brazilian Oxisol. Soil & Tillage Research 77:137- 145.

BARRIOS E. 2007. Soil Biota, Ecosystem Services and Land Productivity. Ecological Economics 64:269-285. BASHAN Y., DE-BASHAN L. 2010. Chapter 2. How the plant growth-promoting bacteria Azospirillum promotes plant growth-A critical assessment. Advances in Agronomy 108:77-136.

BASHAN Y., HOLGUIN G., DE-BASHAN L. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50:521–577.

BAUTISTA F., DURÁN C., LOZANO R. 2000. Cambios químicos en el suelo por aplicación de materia orgánica soluble tipo vinazas. Rev. Int. Contam. Ambient. 16(3):89-101.

BAUTISTA J., GARCÍA R., PÉREZ J., ZAVALETA E., MONTES R., FERRERA R. 2008. Inducción de supresividad a fitopatógenos del suelo. Un enfoque holístico al control biológico. ITERCIENCIA 33(2):96-102.

BHATTACHARYYA P., JHA K. 2012. Plant growthpromoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 28:1327- 1350.

BREMNER J., TABATABAI M. 1971. Use of automated combustion techniques for total carbon, total nitrogen, and sulfur analysis of soils, pp. 1-16. In: L.M. Walsh (ed.). Instrumental methods for analysis of soils and plant tissue.

CAPRA F. 1998. La trama de la vida. Una nueva perspectiva de los sistemas. Trad. Sempau D. 2 Ed. Anagrama. Barcelona, España. 367 p.

CASTRO R., CORNEJO H., RODRÍGUEZ L., BUCIO J. 2009. The role of microbial signals in plant growth and development. Plant Signal Behav. 4(8):701-712.

CHAPARRO J., SHEFLIN A., MANTER D., VIVANCO J. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489-499.

CUMMINGS S. 2009. The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation ofgraminaceous crops; potential and problems. Environ Biotechnol 5:43-50.

DE VLEESSCHAUWER D., HÖFTE M. 2009. Rhizobacteria-induced systemic resistance, pp. 223- 281. In: L.C. Van Loon (ed.). Advances in botanical research, vol 51. Elsevier, Burlington.

DÍAZ R., HUNTER A. 1978. Metodologías de muestreo de suelos, análisis químico de suelos y tejido vegetal y de investigación en invernadero. CATIE. Turrialba, Costa Rica. 2 p.

DIMKPA C., WEINAND T., ASCH F. 2009. Plant– rhizobacteria interactions alleviate abiotic stress condition. Plant, Cell and Environment 32:1682- 1694.

EHRENFELD J., RAVIT B., ELGERSMA K. 2005. Feedback In The Plant-Soil System. Annu. Rev. Environ. Resour. 30:75-115.

EISENHAUER N., BEBLER H., ENGELS C., GLEIXNER G., HABEKOST M., MILCU A., PARTSCH S., SABAIS A., SCHERBER C., STEINBEISS S., WEIGELT A., WEISSER W., SCHEU S. 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91(2):485-496.

FAJARDO E., SARMIENTO S. 2007. Evaluación de la melaza de caña como sustrato para la producción de Saccharomyces cerevisiae. Tesis de licenciatura, Universidad Javeriana, Colombia. 120 p.

FORSYTHE W. 1975. Física de suelos. Manual de Laboratorio. IICA, Costa Rica. 212 p.

FRANCHE C., LINDSTRÖM K., ELMERI C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35-59.

GODFRAY C., BEDDINGTON J., CRUTE I., HADDAD L., LAWRENCE D., MUIR J., PRETTY P., ROBINSON S., THOMAS S., TOULMIN C. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science 327:812-818.

GOVAERTS B., MEZZALAMA M., UNNO Y., SAYRE K., LUNA M., VANHERCK K., DENDOOVEN L., DECKERS J. 2007. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity, Appl. Soil Ecol 37:18-30.

GUIÑAZÚ L., ANDRÉS J., DEL PAPA M., PISTORIO M., ROSAS S. 2009. Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185-190.

HARTEMINK A.E. 2003. Soil fertility decline in the tropics with case studies on plantations. CABI Publishing, England. 360 p.

HENRÍQUEZ C., CABALCETA G. 2012. Guía práctica para el estudio introductorio de los suelos con un enfoque agrícola. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica. 111 p.

HUNGRIA M., FRANCHINI J., BRANDA˜O O., KASCHUK G., ROSINEI R. 2009. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology 42:288-296.

JENKINSON D., POWLSON D. 1976. The effects of biocidal treatment on metabolism in soil-V. A method for measuring soil biomass. Soil Biology and Biochemistry 8(3):209-213.

JONES D., HINSINGER P. 2008. The rhizosphere: complex by design. Plant Soil 312:1-6.

KEMPER W.D. 1965. Aggregate stability, pp. 511-519. In: C.A. Black, D.D. Evans, J.L. White, L.E. Ensminger and F.E. Clark (eds.). Methods of soil analysis. Part 1. Physical and Mineralogical properties, including statistics of measurement and sampling. American society of Agronomy Inc., publisher. Madison Wisconsin. USA.

KIBBLEWHITE M., RITZ K., SWIFT M. 2015. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1492):685-701.

KIRANKUMAR R., JAGADEESH K., KRISHNARAJ P., PATIL M. 2008. Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J. Agric Sci 21:309-311. LAL R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623- 1627.

MARÍN S. 2015. Comparación del comportamiento de un Andisol manejado orgánicamente y otro convencional mediante la respuesta de la papa en invernadero a prácticas orgánicas, convencionales y de solubilizadores de P. VIII Congreso Nacional de Suelos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica, p. 39.

MARTÍNEZ E., FUENTES J., ACEVEDO E. 2008. Carbono Orgánico y Propiedades Del Suelo J. Soil Sc. Plant Nutr. 8(1):68-96.

MAYERA J., SCHEIDA S., WIDMERA F., FLIEßBACHB A., OBERHOLZERA H. 2010. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate Applied Soil Ecology 46:230-239.

MENDES R., KRUIJT M., DE BRUIJN I., DEKKERS E., VAN DER VOORT M., SCHNEIDER J., PICENO Y., DESANTIS T., ANDERSEN G., BAKKERP., RAAIJMAKERS J. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100.

MITTER B., BRADER G., AFZAL M., COMPANT S., NAVEED M., TROGNITZ F., SESSITSCH A. 2013. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria Birgit Advances in Agronomy 121(7):382-426.

MONTAGNINI F., RAMSTAD K., SANCHO F. 1993. Litterfall, litter decomposition and the use of mulch of four indigenous tree species in the Atlantic lowlands of Costa Rica. Agroforestry Systems 23(1):39-61.

NAKKEERAN S., FERNANDO W., SIDDIQUI Z. 2005. Plant Growth Promoting Rhizobacteria Formulations And Its Scope In Commercialization For TheManagement Of Pests And Diseases, pp. 257-296. In: Siddiqui (ed.), PGPR: Biocontrol and Biofertilization. Chapter 10 ©Springer, Dordrecht, The Netherlands.

NCUBE L., MNKENI P., BRUTSCH M. 2011. Agronomic suitability of effective micro-organisms for tomato production. African Journal of Agricultural Research 6(3):650-654.

RESTREPO J., HENSEL J. 2007. El ABC de la agricultura orgánica, fosfitos y panes de piedra. Jairo Restrepo Riverd. Colombia. 396 p.

RICHARDSON A., BAREA J., McNEILL A., PRIGENT C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms Plant Soil 321:305-339.

SANDOVAL D. 2014. Evaluación De Modelos Estadísticos Para La Estimación Del Carbono Orgánico Del Suelo, En Sistemas De Producción De Café Orgánicos y Convencionales De La Zona De Caraigres, Costa Rica. Tesis de licenciatura, Universidad de Costa Rica, Turrialba, Costa Rica. 76 p.

SAUERBECK D., GONZÁLEZ M. 1977. Field decomposition of carbon-14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica, pp. 159-170. In: IAEA and FAO (eds.) in cooperation with Agrochimica Vol. 1. Proc. Symp. Braunschweig.

SINGH J., PANDEY V. 2011. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Singh Agriculture, Ecosystems and Environment 140:339-353.

TORSVIK V., ØVREÅS L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Ecology and industrial microbiology 5:240-245.

VANCE E., BROOKES P., JENKINSON D. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19(6):703- 707.

VAN der HEIJDEN M., BARDGETT M., STRAALEN R. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296-310.

VESSEY J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil (255):571–586. WOOD T., LAWRENCE D. 2008. No short-term change in soil properties following four-fold litter addition in a Costa Rican rain forest. Plant Soil 307:113-122.

YOUNG I., CRAWFORD J. 2004. Interactions and Self- Organization in the Soil-Microbe Complex. Science 304:1634-1637.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.