Actualidades en Psicología ISSN Impreso: 0258-6444 ISSN electrónico: 2215-3535

OAI: https://www.revistas.ucr.ac.cr/index.php/actualidades/oai
Cognitive Training on the Solving of Mathematical Problems: An EEG Study in Young Men
PDF
HTML

Keywords

Cognitive Training
Logical-Mathematical Problems
EEG Correlation
Prefrontal Cortex
Parietal Cortex
entrenamiento cognitivo
problemas lógico-matemáticos
correlación EEG
corteza prefrontal
corteza parietal
Cognitive Training
Logical-Mathematical Problems
EEG Correlation
Prefrontal Cortex
Parietal Cortex

How to Cite

Molina, J., Guevara, M. A., Hernández-González, M., Hidalgo-Aguirre, R. M., Cruz-Aguilar, M. A., & Hevia, J. C. (2021). Cognitive Training on the Solving of Mathematical Problems: An EEG Study in Young Men. Actualidades En Psicología, 35(130), 131–147. https://doi.org/10.15517/ap.v35i130.45526

Abstract

Objective. This study characterized the electroencephalographic correlation (rEEG) between prefrontal and parietal cortices in young men while solving logical-mathematical problems after 18 sessions of cognitive training. Method. Two training groups were formed: one trained with gradually increased complexity (CT), the other with no increase in complexity (ST). Results. CT had a greater number of correct responses in the post-training evaluation than ST and showed a higher correlation between the left frontopolar-parietal cortices in almost all EEG bands, and between the dorsolateral-parietal cortices in the alpha1 band while solving math problems post-training. Results suggest that major functional synchronization between the left prefrontal and parietal cortices plays an important role in improving mathematical problem-solving after cognitive training.

https://doi.org/10.15517/ap.v35i130.45526
PDF
HTML

References

Alba, A., Marroquín, J. L., Peña, J., Harmony, T., & González-Frankenberger, B. (2007). Exploration of event-induced EEG phase synchronization patterns in cognitive tasks using a time-frequency-topography visualization system. Journal of Neuroscience Methods, 161(1), 166-182. https://doi.org/10.1016/j.jneumeth.2006.10.018

Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C., Johnston, E., & Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3983066&tool=pmcentrez&rendertype=abstract

Ansari, D. (2016). The neural roots of mathematical expertise. Proceedings of the National Academy of Sciences, 113(18), 4887-4889. https://doi.org/10.1073/pnas.1604758113

Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Vecchio, F., Cola, B., Rossi, S., & Rossini, P. M. (2004). Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behavioral Neuroscience, 118(4), 687-697. https://doi.org/10.1037/0735-7044.118.4.687

Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., & Basar, E. (1996). Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology, 24(1-2), 101-112. https://doi.org/10.1016/S0167-8760(96)00051-7

Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39(2-3), 241-248. https://doi.org/10.1016/S0167-8760(00)00145-8

Bazanova, O. M., Kondratenko, A. V., Kuz’minova, O. I., Muravleva, K. B., & Petrova, S. E. (2014). EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone. Fiziologiia Cheloveka, 40(2), 31-40.

Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1, 434-454.

Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Developmental Cognitive Neuroscience, 2(2), 290-291. https://doi.org/10.1016/j.dcn.2011.10.001

Campo, P., Maestú, F., Ortiz, T., Capilla, A., Santiuste, M., Fernández, A., & Amo, C. (2005). Time modulated prefrontal and parietal activity during the maintenance of integrated information as revealed by magnetoencephalography. Cerebral Cortex, 15(2), 123-130. https://doi.org/10.1093/cercor/bhh115

Cannon, R., & Lubar, J. (2007). EEG spectral power and coherence: differentiating effects of spatial-specific neuro-operant learning (SSNOL) utilizing LORETA neurofeedback training in the anterior cingulate and bilateral dorsolateral prefrontal cortices. Journal of Neurotherapy, 11(3), 25-44. https://doi.org/10.1080/10874200802126191

Christoff, K., Keramatian, K., Gordon, A. M., Smith, R., & Mädler, B. (2009). Prefrontal organization of cognitive control according to levels of abstraction. Brain Research, 1286, 94-105. https://doi.org/10.1016/j.brainres.2009.05.096

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates. http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf

Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47(1), 65-74. https://doi.org/10.1016/S0167-8760(02)00107-1

Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720-30. https://doi.org/10.1037/a0014296

Dauwels, J., Vialatte, F., Musha, T., & Cichocki, A. (2010). A Comparative Study of synchrony Measures of the Early Diagnosis of Alzheimer’s Disease Bases on EEG. Neuroimage, 49(1), 668-693. https://doi.org/10.1016/j.neuroimage.2009.06.056

World Medical Association. (1964). Declaration Helsinki. https://www.who.int/bulletin/archives/79(4)373.pdf

Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218-224. http://doi.org/10.1016/j.conb.2004.03.008

De Peralta-Menéndez, R., Murray, M. M., Michel, C. M., Martuzzi, R., & González-Andino, S. L. (2004). Electrical neuroimaging based on biophysical constraints. NueroImage, 21(2), 527-539. https://doi.org/10.1016/j.neuroimage.2003.09.051

Dimitriadis, S. I., Sun, Y., Thakor, N. V., & Bezerianos, A. (2016). Causal Interactions between Frontalθ – Parieto-Occipitalα2 Predict Performance on a Mental Arithmetic Task. Frontiers in Human Neuroscience, 10, 1-17. http://doi.org/10.3389/fnhum.2016.00454

Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719-725. http://doi.org/10.1016/S0896-6273(03)00036-9

Fernández, T., Harmony, T., Rodríguez, M., Bernal, J., Silva, J., Reyes, A., & Marosi, E. (1995). EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalography & Clinical Neurophysiology, 94(3), 175-182. https://doi.org/10.1016/0013-4694(94)00262-J

Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2(154), 1-13. https://doi.org/10.3389/fpsyg.2011.00154

Gevins, A., Smith, M. E., McEvoy L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374

Graves, W. W., Binder, J. R., Desai, R. H., Humphries, C., Stengel, B. C., & Seidenberg, M. S. (2014). Anatomy is strategy: skilled reading differences associated with structural connectivity differences in the reading network. Brain & Language, 133, 1-13. https://doi.org/10.1016/j.bandl.2014.03.005

Guevara, M. A., & Corsi-Cabrera, M. (1996). EEG coherence or EEG correlation? International Journal of Psychophysiology, 23, 145-153. https://doi.org/10.1016/S0167-8760(96)00038-4

Guevara, M. A., Ramos, J., Hernández-González, M., & Corsi-Cabrera, M. (2005). FILDIG: A program to filter brain electrical signals in the frequency domain. Computer Methods and Programs in Biomedice, 80(2), 165-172. https://doi.org/10.1016/j.cmpb.2005.07.002

Guevara, M.A., Sanz-Martín, A., Corsi-Cabrera, M., Amezcua, C., & Hernández-González, M. (2010). CHECASEN: programa para revisar señales EEG fuera de línea. Revista Mexicana de Ingeniería Biomédica, 31(2), 135-141.

Guevara, M.A., & Hernández- González, M. (2009). EEGmagic programa para analizar señales electroencefalográficas. Revista mexicana de ingeniería biomédica, 30(1), 41-53.

Haig, A. R., Gordon, E., Wright, J. J., Meares, R. A., & Bahramali, H. (2000). Synchronous cortical gamma‐band activity in task‐relevant cognition. NeuroReport, 11(4), 669-675. https://doi.org/10.1097/00001756-200003200-00004

Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7(83), 1-10. https://doi.org/10.3389/fnint.2013.00083

Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., Marosi, E., Rodríguez, M., & Rodríguez, M. (1996). EEG delta activity: An indicator to internal processing during performance of mental tasks. International Journal of Psychophysiology, 24(1-2), 161-171. https://doi.org/10.1016/S0167-8760(96)00053-0

Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 95-99. http://doi.org/10.1023/b:brat.0000006333.93597.9d

Homan, R. W. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376-382. http://doi.org/10.1016/0013-4694(87)90206-9

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving Fluid Intelligence with Training on Working Memory. Proceedings of the National Academy of Sciences, 105(19), 1-5. http://doi.org/10.1073/pnas.0801268105

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 46-60. http://doi.org/10.1073/pnas.1103228108

Jasper, H. A. (1958). The ten–twenty system of the International Federation of electroencephalography. Clinical Neurophysiology, 10, 371-375.

Jaušovec, N., & Jaušovec, K. (2012). Working memory training: Improve Intelligence-Changing brain activity. Brain and Cognition, 79(2), 96-106. http://doi.org/10.1016/j.bandc.2012.02.007

Jefferys, J. G. R., Traub, R. D., & Whittington, M. A. (1996). Neuronal networks for induced ’40 Hz’ rhythms. Trends in Neurosciences, 19(5), 202-208. https://doi.org/10.1016/S0166-2236(96)10023-0

John, E. R., Karmel, B., Cornig, W., Easton, P., Brown, D., Ahn, H., John, M., Harmony, T., Prichep, L., Toro, A., Gerson, I., Bartlett, F., Thatcher, F., Kaye, H., Valdes, P., & Schwartz, E. (1977). Neurometrics: Numerical taxonomy identifies different profiles of brain functions within groups of behaviorally similar people. Science, 196, 1393-1410.

Juidías, J., & Rodríguez, I. R. (2007). Dificultades de aprendizaje e intervención psicopedagógica en la resolución de problemas matemáticos. Revista de educación, (342), 257-286.

Kashuba, A. D. M., & Nafizger, A. N. (1998). Physiological changes during the menstrual cycle and their effects on the pharmacodynamics of drugs. Clinical Pharmacokinet, 34(3), 203-218. http://doi.org/10.2165/00003088-199834030-00003

Klimesch, W., Doppelmayr, M., Russegger, H., & Pachinger, T. (1996). Theta band power in the human EEG and the encoding of new information. Neuroreport, 7(7), 1235-1240. http://doi.org/10.1097/00001756-199605170-00002

Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D., Sauseng, P., & Roehm, D. (2001). Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience Letters, 302(1), 49-52. http://doi.org/10.1016/S0304-3940(01)01656-1

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Science, 14(7), 317-324. https://doi.org/10.1016/j.tics.2010.05.002

Kueider, A., Bichay, K., & Rebok, G. (2014). Cognitive Training for Older Adults: What Is It and Does It Work? Issue Brief. https://www.air.org/sites/default/files/downloads/report/Cognitive%20Training%20for%20Older%20Adults_Nov%2014.pdf

Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K., & Jäncke, L. (2013). The effects of working memory training on functional brain network efficiency. Cortex, 49(9), 2424-2438. https://doi.org/10.1016/j.cortex.2013.01.008

Le Clec’H, G., Dehaene, S., Cohen, L., Mehler, J., Dupoux, E., Poline, J. B., Lehéricy, S., van de Moortele, P. F., & Bihan, D. (2000). Distinct cortical areas for names of numbers and body parts independent of language and input modality. NeuroImage, 12(4), 381-391. http://doi.org/10.1006/nimg.2000.0627

Luria, A. R., & Tsvetkova, L. S. (1966). Neuropsychological Analisys of the Solution of Arithmetical Problems. Prosveschenije.

Molina, J., Guevara, M. A., Hernández, M., Hidalgo, R. M., & Cruz, M. A. (2019). EEG correlation during the solving of simple and complex logical-mathematical problems. Cognitive, Affective, & Behavioral Neuroscience, 19, 1036-1046. https://doi.org/10.3758/s13415-019-00703-5

Naghavi, H. R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Consciousness and cognition, 14(2), 390-425. https://doi.org/10.1016/j.concog.2004.10.003

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe., Suzuki, T., Kohyama, K., & Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21(1), 99-111. http://doi.org/10.1016/j.neuroimage.2003.08.026

Ostrosky, F., Gómez, E., Matute, E., Rosselli, M., Ardila, A., & Pineda, D. (2012). NEUROPSI-Evaluación Neuropsicológica Breve. Manual Moderno.

Paul, R. H., Richard, C., Lawrence, J., Goldberg, E., Williams, L. M., Cooper, N., Cohen, R. A., Brickman, A. M., & Gordon, E. (2005). Age-dependent change in executive function and gamma 40 Hz phase synchrony. Journal of Integrative Neuroscience, 4(01), 63-76. http://doi.org/10.1142/S0219635205000690

Payne, L., Guillory, S., & Sekuler, R. (2013). Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. Journal of Cognitive Neuroscience, 25(9), 1463-1476. http://doi.org/10.1162/jocn_a_00395

Phillips, W. A., & Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20(4), 657-683. http://doi.org/10.1017/S0140525X9700160X

Pinho, A. L., Manzano, O., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to Create: Expertise in Musical Improvisation Is Associated with Increased Functional Connectivity between Premotor and Prefrontal Areas. The Journal of Neuroscience, 34(18), 6156-6163. http://doi.org/10.1523/JNEUROSCI.4769-13.2014

Prabhakaran, V., Rypma, B., & Gabrieli, J. D. (2001). Neural substrates of mathematical reasoning: a functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology, 15(1), 115-127. http://doi.org/10.1037/0894-4105.15.1.115

Pribram, K. H., & Luria, A. R. (1973). Psychophysiology of the Frontal Lobes. Academic Press.

Ramos, J., Corsi-Cabrera, M., Guevara, M. A., & Arce, C. (1993). EEG Activity during cognitive performance in women. International Journal of Neuroscience, 69(1-4), 185-195. http://doi.org/10.3109/00207459309003329

Rodríguez-Larios, J., Pascal, F., Achermann, P., Shisei, T., & Kaat, A. (2020). From thoughtless awareness to effortful cognition: alpha-theta cross-frequency dynamics in experienced meditators during meditation, rest an arithmetic. Scientific Reports, 10(5419). https://doi.org/10.1038/s41598-020-62392-2

Roessingh, J. J. M., Kappers, A. M. L., & Koenderik, J. J. (2002). Transfer between training of part-tasks in complex skill training: Model development and supporting data. Proceedings of the Human Factors and Ergonomics Society. Computer Science, 1-21.

Sánchez-Pérez, N., Castillo, A., López-López, J. A., Pina, V., Puga, J. L., Campoy, G., González-Salinas, C., & Fuentes, L. J. (2018). Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results. Frontiers in Psychology, 8(2327). http://doi.org/10.3389/fpsyg.2017.02327

Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, 95(12), 7092-7096. http://doi.org/10.1073/pnas.95.12.7092

Sauseng, P., Klimesch, W., Gruber, W. R., & Birbaumer, N. (2008). Cross-frequency phase synchonization: a brain mechanism of memory matching and attention. NeuroImage, 40(1), 308-317. https://doi.org/10.1016/j.neuroimage.2007.11.032

Sauve, K. (1999). Gamma-band synchronous oscillations: Recent evidence regarding their functional significance. Consciousness and Cognition, 8(2), 213-224. https://doi.org/10.1006/ccog.1999.0383

Shaw, J. C. (1981). An introduction to the coherence function and its use in EEG signal analysis. Journal of Medical Engineering & Technology, 5(6), 279-288. https://doi.org/10.3109/03091908109009362

Shipley, W. C., Gruber, C. P., Martin, T. A., & Klein, A. M. (2009). Shipley-2. Escala breve de inteligencia. Manual Moderno.

Simon, O., Kherif, F., Flandin, G., Poline, J. B., Rivière, D., Mangin, J. F., Le Bihan, D., & Dehaene, S. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage, 23(3), 1192-1202. http://doi.org/10.1016/j.neuroimage.2004.09.023

Thatcher, R. W., Krause, P. J., & Hrybyk, M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64(2), 123-143. https://doi.org/10.1016/0013-4694(86)90107-0

Tomasino, B., Maieron, M., Guatto, E., Fabbro, F., & Rumiati, R. I. (2013). How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise? Brain Research, 1540, 21-41. https://doi.org/10.1016/j.brainres.2013.09.048

Van Merriënboer, J. J. G., Kester, L., & Paas, F. (2006). Teaching Complex Rather Than Simple Tasks: Balancing Intrinsic and Germane Load to Enhance Transfer of Learning. Applied Cognitive Psychology, 20, 343-352. https://doi.org/10.1002/acp.1250

Vogel, W., Broverman, D. M., & Klaiber, E. L. (1968). EEG and mental abilities. Electroencephalography & Clinical Neurophysiology, 24(2), 166-175. https://doi.org/10.1016/0013-4694(68)90122-3

Volke, H. J., Dettmar, P., Richter, P., Rudolf, M., & Buhss, U. (2001). On-Coupling and Off-Coupling of Neocortical in Chess Experts and Novices as revealed by evoked EEG coherence measures and factor-based topological analysis--a pilot study. Journal of Psychophysiology, 16(1), 23-36.

von Bastian, C.C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69(1), 36-58. https://doi.org/10.1016/j.jml.2013.02.002

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38(3), 315-336. http://doi.org/10.1016/S0167-8760(00)00173-2

Wickens, C. D., Hutchins, S., Carolan, T., & Cumming, J. (2013). Effectiveness of Part-Task Training and Increasing-Difficulty Training Strategies: A Meta-Analysis Approach. Human Factors, 55(2), 461-470. https://doi.org/10.1177/0018720812451994

Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic Bulletin and Review, 9(2), 185-211. https://doi.org/10.3758/BF03196276

Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13(2), 314-27. http://doi.org/10.1006/nimg.2000.0697

Comments

Downloads

Download data is not yet available.